Michael E. Salandanan

Environmental Laboratory and Research Division
Laguna Lake Development Authority

Effect of Flood in Chlorophyll "a" Concentration in the River

Introduction:

Chlorophyll "a" is a light-absorbing pigment used by plants for photosynthesis. The algal community is the primary source of this parameter in the water, some algae are suspended in the water and some are attached in a substrate. This parameter is an estimate on the standing algal biomass.

This short-term research aims to measure the effect of flood on Chlorophyll "a" concentration and algal biomass in the river.

Kuro-Kawa in Kiso-Fukushima, was selected as the study site before and after the flood. First collection of samples was done on August 10, 2014 and second collection was on August 13, 2014.

Sampling Procedure:

- Identification of the sampling point based on the samples needed for your research.
- After identifying the sampling site, record the physic-chemical data using in-situ equipments and other physical observations.
- Collect five cobbles from the river bed, use the top portion of the rock and place $6 \mathrm{~cm} \times 6 \mathrm{~cm}$ rubber frame to make a guide and by using a toothbrush slowly removes the algae attach to the rock then wash well using a collecting tray.
- Samples were then placed in a container with ice before being brought to laboratory.

Laboratory Analysis Procedure:

- Prepare vacuum filtration system (suction bottles, filtering apparatus, hand-pump and 47 mm glass fiber filter).
- Record the total volume of samples before filtration. Adjust the volume of samples to be filtered depending on the concentration (stop before the filter clogs), record the volume of the filtered samples.
- After filtration, place the glass fiber filter in paper towel to dry. Cut the filter into small pieces ($3-4 \mathrm{~mm}$ width) and place in a flask. Add $15 \mathrm{ml} 90 \%$ acetone. Cover the flask with parafilm and placed it in cool and dark place (coolers) overnight.
- Put filter paper (no. $5,90 \mathrm{~mm}$) on a funnel and filter the samples to remove the cut glass fiber and put into a test tube.
- Measure the absorbance of the samples at 750, 663, 645 and 630 nm using a spectrophotometer. Used 90% acetone as a control. Since absorbance at 750 nm is the turbidity measurement, subtract this value from all other measurements. Once measured, put the solution back into the test tube. Calculate total Chlorophyll "a" concentration using the formula one. (Unesco Method)
- Measure absorbance at 750 and 665 nm then add 2 drops of IN HCl to the solution and leave for a few minutes before re-measuring. Calculate active Chlorophyll "a" concentration and Pheophythin "a" using formula 2 and 3 respectively.
- Formula 1 - 3 show the amounts of Chlorophyll "a" and Pheophythin "a" in 1 ml of acetone extract.
- Formula $1^{\mathrm{A}}:$ Total (Chl "a") $(\mu \mathrm{g} / \mathrm{ml})=11.64{ }^{*} \mathrm{E}_{663}-2.16{ }^{\star} \mathrm{E}_{645}+$ $0.10 * E_{630}$.
${ }^{\text {A }}$ The values $\mathrm{E}_{663}, \mathrm{E}_{645}$ and ${ }^{*} \mathrm{E}_{630}$ are the absorbance measured at 663, 645 and 630 after subtraction by that at 750 nm . i.e. absorbance measurement without turbidity measurement.
- Formula 2^{B} : Active (Chl "a") ($\left.\mu \mathrm{g} / \mathrm{ml}\right)=26.7^{*}\left(\mathrm{E}_{665}-\mathrm{E}_{665} \mathrm{a}\right)$
${ }^{B} \mathrm{E}_{665}$ is the absorbance measured at 665 nm minus that at 750 nm . $\mathrm{E}_{665} \mathrm{a}$ is the absorbance measured at 665 nm after HCl addition minus that at 750 nm .
- Formula 3^{C} : Pheophythin "a") $(\mu \mathrm{g} / \mathrm{ml})=26.7^{*}\left(1.7^{*} \mathrm{E}_{665} \mathrm{a}-\mathrm{E}_{665}\right)$
${ }^{C}$ Pheophythin "a" is a chlorophyll molecule broken down to lose $2 \mathrm{Mg}^{2+}$. High Pheophythin "a" indicates low algal activity. i.e. many dead/weak cells.
- From the area scraped for algae and amount of water filtered, convert the Chlorophyll "a" into $\mathrm{mg} / \mathrm{m}^{2}$.
- Algal Biomass (mg Chl "a"/m2) $=1 / 1000 * C h l o r o p h y l l ~ " a " ~ * ~ a m o u n t ~ o f ~$ extract*(re-suspension/filtered water)*1/scraped area (5 stones with area of $6 \mathrm{~cm} \times 6 \mathrm{~cm}$.

Results:

1. Environmental Assessment of Sampling Point

Date	Time	Site	Habitat	pH	Conductivity $(\mathrm{mS} / \mathrm{m})$	D.O. mg / L	Temp.Light Intensity (micro $\mathrm{mol} / \mathrm{sec} / \mathrm{m} 2)$	Notes/ Remarks	
Aug. 10, 2014	$10: 30$ AM	Kuro- Kawa	Pool	7.85	8	8.54	16.53	267.9	Low precipitation and cloudy
$9: 26$ AM	Kuro- Kawa	Riffle	7.4	7	8.51	16.46	94.37	precipitation and very cloudy	
Aug. 13, 2014	$9: 10$ AM	Kuro- Kawa	Pool	7.59	4	9.23	14.8	1540.3	Sunny, water level is high
	$10: 30$ AM	Kuro- Kawa	Riffle	7.72	3	9.27	14.6	58.50	Water current is very strong

2. Photos of Sampling Points

Kuro-Kawa Pool, August 10, 2014

Kuro-Kawa Pool, August 13, 2014

Kuro-Kawa Riffle, August 10, 2014

Kuro-Kawa Riffle, August 13, 2014

3. Comparison of Laboratory Results Using Unesco Method and Lorenzen Method (Before and After the Flood)

	Unesco Method			Lorenzen Method chlorophyll "a" $(\mu \mathrm{g} / \mathrm{ml})$		Algal Biomass	Remarks
August 10, 2014	Active Chlorophyll "a" concentration $(\mu \mathrm{g} / \mathrm{ml})$	Pheophythin "a" concentration $(\mu \mathrm{g} / \mathrm{ml})$	Algal Biomass	Remarks			
Kuro- Kawa Pool	0.86	5.5		August 10, 2014			
Kuro- Kawa Riffle	0.79	11.3		0.67	0.19	5.5	

			and 56.18% decreased in Algal Biomass				Chl "a" and 55.09% decreased in Algal Biomass
Kuro- Kawa Riffle	0.52	2.51	$\begin{gathered} \text { 34.18\% } \\ \text { decreased } \\ \text { in Chl "a" } \\ \text { and } \\ 77.79 \% \\ \text { decreased } \\ \text { in Algal } \\ \text { Biomass } \end{gathered}$	0.51	0.04	2.64	$\begin{gathered} 33.77 \% \\ \text { decreased } \\ \text { in Active } \\ \text { Chl "a" } \\ \text { and } \\ 79.21 \% \\ \text { decreased } \\ \text { in Algal } \\ \text { Biomass } \end{gathered}$

Results/Conclusion:

Comparing the data obtained between the result of analysis on August 10 and August 13, 2014, it was revealed that both Chlorophyll "a" concentration and Algal Biomass decreased after the flood. This in effect shows that the algae attached or present in the substrate could have been wiped out due to flooding.

Acknowledgments:

Attending the summer international field biology course for young scientists could not have been possible without the effort and generosity of Prof. Noboru Okuda and other staffs of Center for Ecological Research, Kyoto University. Special thanks to the Research Institute for Humanity and Nature (RIHN) for providing financial assistance during my stay in the summer field biology course.

