安定同位体比を用いた河川食物網研究:エンドメンバーの変動は何によって決まるのか?
石川 尚人
食物網研究において炭素・窒素安定同位体比(δ13C、δ15N)は、生物の餌起源と栄養段階を推定できることから幅広く利用されている。特に河川生態系においては、生物は岩石に付着している藻類(付着藻類)を主とする内部生産産物と陸上植物リターを主とする外部生産産物という2つの炭素起源に依存している。このうち付着藻類のδ13Cは光合成における同位体効果により同一河川内で変動を示すが、リターのδ13Cはほぼ一定の値を示すことが知られている。一方、δ15Nは河川集水域の土地利用形態や栄養環境によって、河川間で異なることが予測されると共に、一般に集水域面積の増加に伴い上昇することが知られている。本発表ではδ13C、δ15Nを用いた河川食物網研究のレビューと共に、特に付着藻類のδ13C,δ15Nについて既存の各研究からデータを取り出し、メタ解析アプローチからこれらの変動要因を探る。そして最後に、δ13C、δ15Nによる食物網研究の利点と欠点、今後の展開に関して議論したい。
参考文献
A.W.Walters, R. T. B., D.M.Post.
2009. Anadromous alewives (Alosa
pseudoharengus) contribute marine-derived nutrients
to coastal stream food webs. Canadian Journal of Fisheries and Aquatic Sciences
66: 439-448.
Alexander D. Huryn,
R. H. R., Roger G. Young, Chris J . Arbuckle, Kathi
Peacock and Graeme Lyon. 2001. Temporal shift in contribution of terrestrial
organic matter to consumer production in a grassland river. Freshwater Biology 46: 213–226.
Bergfur, J., R. K. Johnson, L. Sandin, and W. Goedkoop. 2009.
Effects of nutrient enrichment on C and N stable isotope ratios of
invertebrates, fish and their food resources in boreal streams. Hydrobiologia 628: 67-79.
Brabandere, L., T. Frazer, and J. Montoya.
2007. Stable nitrogen isotope ratios of macrophytes
and associated periphyton along a nitrate gradient in
two subtropical, spring-fed streams. Freshwater Biology 52: 1564-1575.
Bruce C. Chessman, D. P. W., Simon M.
Mitrovic,Lorraine Hardwick. 2009. Trophic
linkages between periphyton and grazing macroinvertebrates in rivers with different levels of catchment development. Hydrobiologia
625: 135-150.
Christopher Thomas Robinson, D. S.,
Matthias Svoboda and Stefano M. Bernasconi. 2008.
Functional measures and food webs of high elevation springs in the Swiss alps.
Aquatic Sciences 70: 432-445.
Danny C. P. Lau, K. M. Y. L., and
David Dudgeon. 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical
headwater streams? J. N. Am. Benthol. Soc. 28: 426-439.
---, K. M. Y. L., and David Dudgeon.
2008. Experimental dietary manipulations for determining the relative
importance of allochthonous and autochthonous food
resources in tropical streams. Freshwater Biology 53: 139-147.
---. 2009. What does stable isotope
analysis reveal about trophic relationships and the
relative importance of allochthonous and
autochthonous resources in tropical streams? A synthetic study from Hong Kong.
Freshwater Biology 54.
Doi, H., Y. Takemon,
T. Ohta, Y. Ishida, and E. Kikuchi. 2007. Effects of
reach-scale canopy cover on trophic pathways of caddisfly larvae in a Japanese mountain stream. Marine and
Freshwater Research 58: 811-817.
Dudgeon, A. O. Y. L. A. D. 2008. Food
resources of shredders and other benthic macroinvertebrates
in relation to shading conditions in tropical Hong Kong streams. Freshwater
Biology 53: 2011-2025.
Finlay, J. 2001. Stable-carbon-isotope
ratios of river biota: implications for energy flow in lotic
food webs. Ecology 82: 1052-1064.
---. 2004. Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and
Oceanography: 850-861.
---, J., M. Power, and G. Cabana.
1999. Effects of water velocity on algal carbon isotope ratios: implications
for river food web studies. Limnology and Oceanography: 1198-1203.
France, R., and A. Cattaneo. 1998. delta C-13 variability of benthic algae:
effects of water colour via modulation by stream
current. Freshwater Biology 39: 617-622.
Fuentes Brito,
E., T. Moulton, M. De Souza, and S. Bunn. 2006. Stable isotope analysis
indicates microalgae as the predominant food source
of fauna in a coastal forest stream, south-east Brazil. Austral ecology(Print) 31: 623-633.
Fureder, L., C. Welter, and J. K. Jackson.
2003. Dietary and stable isotope (delta C-13, delta N-15) analyses in alpine
stream insects. International Review of Hydrobiology 88: 314-331.
Godwin, C. M., M. A. Arthur, and H.
J. Carrick. 2009. Periphyton nutrient status in a
temperate stream with mixed land-uses: implications for watershed nitrogen
storage. Hydrobiologia 623: 141-152.
Hamilton, S. K., S. J. Sippel, and S. E. Bunn. 2005. Separation of algae from
detritus for stable isotope or ecological stoichiometry
studies using density fractionation in colloidal silica. Limnology and Oceanography-Methods 3: 149-157.
Huryn, A. D., R. H. Riley, R. G. Young, C.
J. Arbuckle, and K. Peacock. 2002. Natural-abundance stable C and N isotopes
indicate weak upstream-downstream linkage of food webs in a grassland river. Archiv Fur Hydrobiologie 153: 177-196.
Jones, R., L. King, M. Dent, S. Maberly, and C. Gibson. 2004. Nitrogen stable isotope
ratios in surface sediments, epilithon and macrophytes from upland lakes with differing nutrient
status. Freshwater Biology 49: 382-391.
Junger, M., Planas,
D. 1994. Quantitative Use of Stable Carbon-Isotope Analysis to Determine the Trophic Base of Invertebrate Communities in a Boreal Forest
Lotic System. Canadian Journal of Fisheries and
Aquatic Sciences 51: 52-61.
Lau, D. C., K. M. Leung, and D.
Dudgeon. 2009. Evidence of rapid shifts in the trophic
base of lotic predators using experimental dietary
manipulations and assimilation-based analyses. Oecologia
159: 767-776.
Macleod, N. A., and D. R. Barton.
1998. Effects of light intensity, water velocity, and species composition on
carbon and nitrogen stable isotope ratios in periphyton.
Canadian Journal of Fisheries and Aquatic Sciences 55: 1919-1925.
Manetta, G. I., E. Benedito-Cecilio,
and M. Martinelli. 2003. Carbon sources and trophic position of the main species of fishes of Baia River, Parana River floodplain,
Brazil. Braz J Biol 63: 283-290.
Matthew P. Dekar,
D. D. M. A. G. R. H. 2009. Shifts in the trophic base
of intermittent stream food webs. Hydrobiologia 635: 263-277.
Michelle Evans-White1, W. K. D., ∗,
Lawrence J. Gray2 & Ken M. Fritz3. 2001. A comparison of the trophic ecology of the crayfishes (Orconectes
nais (Faxon) and Orconectes neglectus (Faxon)) and the central stoneroller minnow (Campostoma anomalum (Rafinesque)): omnivory in a tallgrass prairie stream. Hydrobiologia
462: 131–144.
Mulholland, P. J., Tank, J. L.,Sanzone,
D. M.,Wollheim, W. M.,Peterson,
B. J.,Webster, J. R.,Meyer,
J. L. 2000. Food resources of stream macroinvertebrates
determined by natural-abundance stable C and N isotopes and a N-15 tracer
addition. Journal of the North American Benthological
Society 19: 145-157.
Pereira, A. L., E. Benedito, and C. M. Sakuragui.
2007. Spatial variation in the stable isotopes of 13C and 15N and trophic position of Leporinus friderici (Characiformes, Anostomidae) in Corumba
Reservoir, Brazil. An Acad Bras Cienc
79: 41-49.
Piet Verburg∗1, S. S. K., Catherine M.
Pringle∗, Karen R. Lips‡ and Dana L. Drake∗ 2. 2007. A stable isotope study of
a neotropical stream food web prior to the
extirpation of its large amphibian community. Journal of Tropical Ecology 23: 643–651.
Primavera, J. 1996. Stable carbon and
nitrogen isotope ratios of penaeid juveniles and
primary producers in a riverine mangrove in Guimaras, Philippines. Bulletin of Marine Science 58: 675-683.
Rainer Zah*,
P. B., Stefano M. Bernasconi² and Urs Uehlinger*. 2001. Stable isotope analysis of macroinvertebrates and their food sources in a glacier
stream. Freshwater Biology 46: 871-882.
Rasmussen, J., and V. Trudeau. 2007.
Influence of velocity and chlorophyll standing stock on periphyton
delta^ 1^ 3C and delta^ 1^ 5N in the Ste. Marguerite River system, Quebec.
Canadian Journal of Fisheries and Aquatic Sciences 64: 1370.
---. B., V. Trudeau, and G. Morinville. 2009. Estimating the scale of fish feeding
movements in rivers using delta C-13 signature gradients. Journal of Animal
Ecology 78: 674-685.
Rosemond, L. E. E. A. A. D. 2004. Small
reductions in forest cover weaken terrestrialaquatic
linkages in headwater streams. Freshwater Biology 49: 721-734.
Russell W. Perry, M. J. B., and
Jeffrey A. Grout. 2003. Effects of disturbance on contribution of energy
sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in
boreal streams. Canadian Journal of Fisheries and Aquatic Sciences 60: 390-400.
Singer, G. and others 2005. Flow
history explains temporal and spatial variation of carbon fractionation in
stream periphyton. Limnology and Oceanography: 706-712.
Spencer, C. N., K. O. Gabel, and F.
R. Hauer. 2003. Wildfire effects on stream food webs
and nutrient dynamics in Glacier National Park, USA. Forest Ecology and
Management 178: 141-153.
Staal, M. and others 2007. Different
carbon isotope fractionation patterns during the development of phototrophic
freshwater and marine biofilms. Biogeosciences
4: 613-626.
Stephanie M. Parkyn,
² Kevin J . Collier* and Brendan J. Hicks. 2001. New Zealand stream cray®sh: functional omnivores but trophic
predators? Freshwater Biology 46.
Stuart E. Bunn*, P. M. D. A. M. W.
2003. Sources of organic carbon supporting the food web of an arid zone
floodplain river. Freshwater Biology 48:
619–635.
Thorp, J., M. Delong, K. Greenwood,
and A. Casper. 1998. Isotopic analysis of three food web theories in
constricted and floodplain regions of a large river. Oecologia
117: 551-563.
Trudeau, V., and J. B. Rasmussen.
2003. The effect of water velocity on stable carbon and nitrogen isotope
signatures of periphyton. Limnology and Oceanography 48: 2194-2199.
W. R. Hill, S. E. F., B. J. Roberts.
2008. 13C dynamics in benthic algae: Effects of light, phosphorus, and biomass
development. Limnology and Oceanography 53:
1217-1226.
W.M., M. J. H. L. 2001. Seasonal
variation in stable isotope ratios of stream algae. Verh.
Internat. Verein. Limnol 27: 3304-3307.
Walter R. Hill, R. G. M. 2006.
Changes in carbon stable isotope ratios during periphyton
development. Limnology and Oceanography 51:
2360-2369.
Watanabe, K., M. T. Monaghan, Y. Takemon, and T. Omura. 2008. Biodilution of heavy metals in a stream macroinvertebrate
food web: evidence from stable isotope analysis. Sci
Total Environ 394: 57-67.
Zeug, S. C., and K. O. Winemiller. 2008. Evidence supporting the importance of
terrestrial carbon in a large-river food web. Ecology 89: 1733-1743.