Methanotrophic food webs as a carbon recycling system in lakes under climate changes

 

Noboru Okuda (CER, Kyoto Univ.)

 

Recent studies suggest that freshwater ecosystems are the primary source of atmospheric methane which is 25-times more effective than carbon dioxide as a greenhouse gas. This estimation, however, could be biased because methane emission from tropical lakes is still unknown. Methane oxidizing bacteria (MOB) which assimilate dissolved methane aerobically or anaerobically have great impacts on methane cycling in lake ecosystems. Methanotrophic food webs (MFWs), in which methane-derived carbon is trophically transferred through the MOB and embedded within a food web, function as a carbon recycling unit in lake ecosystems. The understanding of controlling mechanisms for the MFWs therefore will help us to estimate global methane flux with accuracy. In boreal and temperate lakes, ecology, physiology and phylogeny of the MOB are well studied, whereas there is limited knowledge on those in sub-tropical and tropical lakes. Here we introduce our international collaborative research on MFWs in Fei-Tsui Reservoir, Taipei, which is characteristic of both sub-tropical and tropical lakes, depending on climate condition. Our aims are 1) to characterize community composition of MOB and examine their spatio-temporal distribution, 2) to trace methane-derived carbon flows within the lake food web, and 3) finally to project future methane flux in the subtropical lake ecosystems under the ongoing global warming.

 

References

Aydin, M., K. R. Verhulst, E. S. Saltzman, M. O. Battle, S. A. Montzka, D. R. Blake, Q. Tang, and M. J. Prather. 2011. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476:198-201.

Bastviken, D., J. Cole, M. Pace, and L. Tranvik. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18:GB4009.

Bastviken, D., J. Ejlertsson, I. Sundh, and L. Tranvik. 2003. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84:969-981.

Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331:50-.

Borjesson, G., I. Sundh, and B. Svensson. 2004. Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiology Ecology 48:305-312.

Bousquet, P., P. Ciais, J. B. Miller, E. J. Dlugokencky, D. A. Hauglustaine, C. Prigent, G. R. Van der Werf, P. Peylin, E. G. Brunke, C. Carouge, R. L. Langenfelds, J. Lathiere, F. Papa, M. Ramonet, M. Schmidt, L. P. Steele, S. C. Tyler, and J. White. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439-443.

Carini, S., N. Bano, G. LeCleir, and S. B. Joye. 2005. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environmental Microbiology 7:1127-1138.

DeNiro, M. J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495-506.

Dumestre, J.-F., E. O. Casamayor, R. Massana, and C. Pedrós-Alió. 2001. Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana). Aquatic Microbial Ecology 26:209-221.

Eller, G., P. Deines, J. Grey, H.-H. Richnow, and M. Krüger. 2005. Methane cycling in lake sediments and its in uence on chironomid larval d13C. FEMS Microbiology Ecology 54:339-350.

Ettwig, K. F., M. K. Butler, D. Le Paslier, E. Pelletier, S. Mangenot, M. M. M. Kuypers, F. Schreiber, B. E. Dutilh, J. Zedelius, D. de Beer, J. Gloerich, H. J. C. T. Wessels, T. van Alen, F. Luesken, M. L. Wu, K. T. van de Pas-Schoonen, H. J. M. O. den Camp, E. M. Janssen-Megens, K. J. Francoijs, H. Stunnenberg, J. Weissenbach, M. S. M. Jetten, and M. Strous. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543-+.

Ettwig, K. F., T. van Alen, K. T. van de Pas-Schoonen, M. S. M. Jetten, and M. Strous. 2009. Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum. Applied and Environmental Microbiology 75:3656-3662.

Heimann, M. 2011. Enigma of the recent methane budget. Nature 476:157-158.

Kai, F. M., S. C. Tyler, J. T. Randerson, and D. R. Blake. 2011. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476:194-197.

Kankaala, P., J. Huotari, E. Peltomaa, T. Saloranta, and A. Ojala. 2006. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnology and Oceanography 51:1195-1204.

Kankaala, P., S. Taipale, L. Li, and R. I. Jones. 2010. Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquatic Ecology 44:781-795.

Kojima, H., T. Iwata, and M. Fukui. 2009. DNA-based analysis of planktonic methanotrophs in a stratified lake. Freshwater Biology 54:1501-1509.

Kojima, H., M. Tsutsumi, K. Ishikawa, T. Iwata, M. Mussmann, and M. Fukui. 2012. Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Systematic and Applied Microbiology 35:233-238.

McDonald, I. R., L. Bodrossy, Y. Chen, and J. C. Murrell. 2008. Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology 74:1305-1315.

Okuda, N., T. Takeyama, T. Komiya, Y. Kato, Y. Okuzaki, J. Karube, Y. Sakai, M. Hori, I. Tayasu & T. Nagata. 2012. A food web and its long-term dynamics in Lake Biwa: a stable isotope approach. Page in press in H. Kawanabe, editor. Lake Biwa: Interactions between Nature and People. Springer Academic, Amsterdam.

Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703-718.

Sanseverino, A. M., D. Bastviken, I. Sundh, J. Pickova, and A. Enrich-Prast. 2012. Methane carbon supports aquatic food webs to the fish level. PLoS ONE 7:e42723.

Sugimoto, A. and E. Wada. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation. Geochimica et Cosmochimica Acta 59:1329-1337.

Summons, R. E., L. L. Jahnke, and Z. Roksandic. 1994. Carbon isotopic fractionation in lipids from methsnotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers. Geochimica et Cosmochimica Acta 58:2853-2863.Sundh, I., D. Bastviken, and L. J. Tranvik. 2005. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Applied and Environmental Microbiology 71:6746-6752.

Sundh, I., D. Bastviken, and L. J. Tranvik. 2005. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Applied and Environmental Microbiology 71:6746-6752.

Taipale, S., P. Kankaala, M. Tiirola, and R. I. Jones. 2008. Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89:463-474.

Tsutsumi, M., H. Kojima, and M. Fukui. 2012. Vertical Profiles of Abundance and Potential Activity of Methane-Oxidizing Bacteria in Sediment of Lake Biwa, Japan. Microbes and Environments 27:67-71.

Yamada, Y., T. Ueda, T. Koitabashi, and E. Wada. 1998. Horizontal and vertical isotopic model of Lake Biwa ecosystem. Japanese Journal of Limnology 59:409-427.