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Abstract The ability to orient and navigate within a cer-
tain environment is essential for all animals, and spatial
memory enables animals to remember the locations of such
markers as predators, home, and food. Here we report that
the migratory marine cardinalfish Apogon notatus has the
potential to retain long-term spatial memory comparable to
that of other animals. Female A. notatus establish a small
territory on a shallow boulder bottom to pair and spawn
with males. We carried out field research in two consecu-
tive breeding seasons on territory settlement by individu-
ally marked females. Females maintained a territory at the
same site throughout one breeding season. After overwin-
tering in deep water, many of them (82.1%) returned to
their breeding ground next spring and most occupied the
same site as in the previous season, with only a 0.56 m shift
on average. Our results suggest that female A. notatus have
long-distance homing ability to pinpoint the exact location
of their previous territory, and retain spatial memory for as
long as 6 months.
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Introduction

Spatial learning and memory are essential properties for
animals to forage, reproduce, avoid predators, and migrate.
Studies suggest that fish are capable of spatial learning and
can use information in various different environments
(Odling-Smee et al. 2006). In fish, spatial memory can
enhance foraging rate (Hughes and Blight 1999), territory
defence (Lamanna and Eason 2003), and predator avoid-
ance (Markel 1994). In mammals and birds, the hippocam-
pus plays a crucial role in spatial memory (Healy et al.
2005). Fish also possess a brain structure (telencephalon)
that is functionally equivalent to the hippocampus (Salas
et al. 1996). Some fish species have the ability to integrate
geometric and non-geometric information to orient them-
selves (redtail splitfin Xenotoca eiseni, Sovrano et al. 2002,
2005, 2007; Sovrano and Bisazza 2003; goldfish Carassius
auratus, Vargas et al. 2004; see reviews by Chiandetti and
Vallortigara 2008).

It has been reported that fish use a variety of cues for ori-
entation and navigation. For example, coho salmon
(Oncorhynchus kisutch), using an olfactory cue, can return
to their natal stream 18 months after migration to sea
(Cooper and Hasler 1974). Nishi and Kawamura (2005)
suggested that the Japanese eel Anguilla japonica could use
geomagnetic field as their directional guide for long-dis-
tance migration. Sticklebacks can associate visual cues with
the status of potential food sources and use memorized
information to guide foraging behaviour (Hughes and
Blight 2000). Furthermore, juvenile Atlantic salmon (parr),
Salmo salar, can use a coloured visual landmark as a local
cue (Braithwaite et al. 1996) and goldfish, Carassius aura-
tus, can learn a simple visual discrimination (landmark ver-
sus no landmark) to find a hidden food reward efficiently
(Warburton 1990).
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Fig. 1 Shallow boulder habitat of A. notatus at Morode Beach, Japan.
There are three pairs (black arrows) in the photograph (Photo by
S. Oguri). See text for details

Apogon notatus (Pisces: Apogonidae) is a marine gre-
garious cardinalfish inhabiting the coastal waters of the
northwestern Pacific. Female A. notatus start establishing
their territories on a boulder bottom more than two months
prior to the breeding season, and maintain their territories
throughout the breeding season (Okuda 1999) (see Fig. 1).
Females invite males shoaling above the boulder bottom to
their territories to live in pairs for several weeks to months
until spawning. After receiving a spawned egg mass in their
buccal cavities, males leave the territories to mouthbrood in
shoals. Female territorial behaviour is directed nearly
exclusively towards potential egg predators (shoaling con-
specifics) rather than towards mating competitors (Fuku-
mori et al. 2009), suggesting that the primary function of
the female territory is to avoid predation of the egg mass at
the moment of spawning. After having several breeding
cycles with different males, females abandon their territo-
ries in autumn to join large shoals in the water column
(Okuda 1999). Thereafter, both males and females migrate
to deep water to spend a couple of winter months there
(Fukumori et al. 2008).

In the present study, we examined the homing ability of
female A. notatus from their deep-water habitat to their
neritic breeding habitat, by focusing on the positional shifts
of territories occupied in two consecutive breeding seasons.

Methods

We conducted a field survey at Morode Beach, Shikoku
Island, Japan, with the aid of SCUBA. We set a quadrat
measuring 10 x 20 m on the boulder area at a depth of 3.6—
8.5 m and censused A. notatus there four or five times per
month from April 2000 to March 2001 (but only once in
June 2000). In each census, we counted the number of
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A. notatus, discriminating between territorial females and
other fishes based on their positions and behaviour.

To assess how accurately females return to their territo-
ries over consecutive breeding seasons, we conducted a fol-
low-up survey of individually marked females from 1999 to
2000. At the beginning of the breeding season in 1999, we
caught 139 females in and around the quadrat using seine
and hand nets, and marked them with visible implant elas-
tomer (VIE) tags (see Okuda 1999 for details and ethical
notes). After marking, we released them at their capture
sites.

We plotted the locations of marked territorial females on
the quadrat map in 15 weekly censuses conducted from
June to October 1999. To estimate territory size, we mea-
sured the area of a minimum convex polygon covering all
locations plotted for each female whose locations were
plotted at least three times. We also converted these loca-
tions into x and y coordinates and averaged the values of
each coordinate to determine the centroid of the territory. In
the following breeding season, we conducted 21 censuses
for marked females found in the quadrat to determine the
centroid of each territory again. We used the distance
between the two centroids as an index of their homing
accuracy.

Results
Breeding behaviour

Female A. notatus started to establish their territories in
March, and the number of territorial females increased until
May when the earliest spawning was observed (Fig. 2).
Thereafter, the number of territorial females was relatively
constant until August but declined drastically in September,
the final month of the breeding season. After the last
spawning, females abandoned their territories to join shoals
consisting of both sexes in the water column. Shoals were
near the breeding ground from September to November.
However, in December when the water temperature drasti-
cally decreased (Fukumori et al. 2008), most of A. notatus
disappeared from the breeding ground (Fig. 2).

Homing behaviour

Of 139 marked females, 118 established territories and their
locations were repeatedly plotted on the quadrat map dur-
ing the 1999 breeding season. Their breeding territories
were 0.27 + 0.38 SE m? (N = 118). Of 117 marked females
found at the last census of 1999, 75 (64.1%) were found
again in and around the same quadrat in the following
breeding season. Most of them (82.1%) occupied the same
site as in the previous season, with only a
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Fig. 2 Monthly changes in the total number of A. notatus (grey bars)
and the number of territorial females (closed circles) in the study
quadrat. Black, horizontal hatched, and dotted bars indicate periods of
female territory settlement, shoaling, and winter migration, respec-
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Fig. 3 Frequency distribution of distance (m) between centroids of
territories settled by each marked female in two consecutive breeding
seasons

0.57 £ 0.06 SE m shift (Fig. 3). This means that most fish
returned to 20-30 cm of their previous breeding territory.
The longest shift observed was 3.0 m.

Discussion

Spatial memory ability has been reported in a variety of
animal species. Some studies have suggested that memory
capacity is determined by particular ecological conditions
and life history demands (Mackney and Hughes 1995;
Clayton 1998; Healy et al. 2005; Odling-Smee et al. 2006).
Grey squirrels can remember the precise location of their
food storage using a visual cue, and their spatial memory

lasts for 62 days at most (Macdonald 1997). The nutcrack-
ers are able to accurately relocate the caches they had made
using visual cues and memory persists for 9—11 months
(Balda and Kamil 1998; Gibson and Kamil 2009). In fish,
spatial memory duration usually ranges from 8 to 330 days
(Aronson 1971; Milinski 1994; Brown 2001). Lindauer
(1963) reported that bees remember the colour of a feeding
place over several months. Furthermore, several species of
wood ants (genus Formica) have been shown to exhibit
high degrees of site or route fidelity based mainly on visual
memories of environmental landmarks (Rosengren 1971;
Rosengren and Fortelius 1986).

Homing behaviour has been observed in some cardi-
nalfishes. The Banggai cardinalfish, Prerapogon kauderni,
have the ability to home 40 m away from the original loca-
tion of their group within 24 h of experimental transloca-
tion (Kolm et al. 2005). In three Australian cardinalfishes,
Apogon doederleini, Cheilodipterus artus, and Cheilodipte-
rus quinquelineatus, adult fish were able to return to their
reefs within 3 days after being experimentally moved 2 km
away (Marnane 2000). An isotopic study revealed that A.
notatus overwinter in a deep-water habitat more than 600 m
away from their breeding ground (Fukumori et al. 2008).
This means that A. notatus also have long-distance homing
ability.

Fish use several cues for orientation during migration,
e.g. olfactory cue (coho salmon O. kisutch, Nevitt et al.
1994; five-lined cardinalfish C. quinquelineatus, Dgving
et al. 2006), the earth’s magnetic field (blue shark Prionace
glauca; stingray Urolophus halleri, Kalmijn 2000), and
polarized light stimulus (juvenile rainbow trout Oncorhyn-
chus mykiss, Parkyn et al. 2003). A magnetic cue is useful
for long-distance cruising during ocean migration, while
olfactory and visual cues provide migrators spatial informa-
tion on local environments. It is well known that salmonids
use the earth’s magnetic field as an orientation cue during
ocean migration, while they also use olfactory and visual
cues when approaching their natal stream and breeding
ground (Atlantic salmon S. salar, Hansen et al. 1993). In
the Australian cardinalfish, C. quinquelineatus, individuals
can discriminate between conspecifics from their own reef
and those from other reefs by scent, suggesting that their
homing behaviour is based on an olfactory cue (Dgving
et al. 2006). Fukumori et al. (2009) indicated that female A.
notatus establish their territories on the basis of the physical
characteristics of the breeding ground, such as boulder size
and structural complexity. Female A. notatus seem to use
visual cues for pinpoint homing, based on the memory of
detailed spatial structure around their territories, although
they may use magnetic and/or olfactory cues to navigate in
open water.

Recently, it has been reported that the medial and lateral
pallia of teleost fish have functions analogous to the
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hippocampal pallium and pallial amygdala of mammals
(Broglio et al. 2005). Some fish may have the potential to
retain long-term spatial memory, as suggested in the pres-
ent study.

Conclusion

In conclusion, in A. notatus, the period during which
females are away from their territories is approximately
6 months: 3 months of shoaling after territory abandonment
and 3 months in deep-water habitat in winter. Such long-
term spatial memory is high among hitherto reported fish.
In addition, females possess the ability to pinpoint the exact
location of their previous territory. Future work will
address the mechanistic basis for this kind of spatial
memory.
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