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Abstract

 

Cardinalfishes, in which males alone provide
mouthbrooding, are likely candidates for sex-role reversal
because of a higher potential reproductive rate for females
than for males. In the gregarious cardinalfish, 

 

Apogon nota-
tus

 

, females establish breeding territories to form pairs prior
to the breeding season. Within breeding pairs, females are
more active in courtship and in attacks against conspecific
intruders. Sex roles thus seem to be behaviorally reversed.
The operational sex ratio is, however, male-biased because
females suffer higher mortality than males and conse-
quently males predominate in number in the adult popula-
tion, leading to the prediction that males would be sexually
selected. In the present study, morphological measurements
showed that males had a protrudent lower lip that was
expressed markedly during the breeding season. Field
observation revealed that males with a longer and wider lip
were preferentially accepted as a mating partner by territo-
rial females. The male lip size positively correlated with
their somatic condition, suggesting that the ornamental lip
has evolved through indicator mechanisms of sexual selec-
tion. By contrast, females had longer fins than males, but
these sexual dimorphisms were less pronounced and most
of them were seasonally constant. These results support the
prediction that sexual selection acts on males in this fish.
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Introduction

 

Sexual ornaments, defined as morphological, behavioral or
physiological modifications that are sexually attractive to
the opposite sex, are generally expressed more by males
than by females. This is because sexual selection acts more
strongly on males, whose potential reproductive rate is
higher than that of females and, hence, the operational sex
ratios distort toward males, leading to more intense compe-
tition among them for access to mates (Emlen and Oring
1977; Clutton-Brock and Parker 1992; Kvarnemo and
Ahnesjö 1996; Parker and Simmons 1996; also see Kokko
and Monaghan 2001). Males with more exaggerated sexual
ornaments gain a mating advantage over those with less
showy ornaments through female mate choice, while
females can benefit from mating with more ornate males
because they derive direct phenotypic benefits from orna-
ment holders (Heywood 1989; Hoelzer 1989; Price 1993;
Kokko 1998) and/or indirect genetic benefits, such as
heritable sexual attractiveness (Lande 1981; Kirkpatrick
1982; Pomiankowski et al. 1991) and heritable viability
(Andersson 1986; Iwasa et al. 1991). For male ornaments
and female preferences to co-evolve, it is often, but not
always, necessary that the ornaments honestly signal the
male quality to females (i.e., indicator mechanisms;
Andersson 1994).

There are some exceptions in which females are the
ornate sex and males the choosy sex, i.e., sex-role reversal
(Williams 1975). Although the sex-role reversal is taxonom-
ically sporadic (Gwynne 1991), some reproductive features
are shared among role-reversed species. In these species,
males make a higher parental investment than do females
in terms of energetically expensive testicular production,
such as spermatophore in copulatory insects (Simmons
1992, 1995), or of elaborated paternal care that restricts the
number of mates received by males at once, as in external
bearers (Ichikawa 1989; Vincent et al. 1992; Balshine-Earn
and McAndrew 1995) and some birds (Ligon 1999). Such
features result in a decrease in reproductive rate of males
relative to females and consequently produce female-biased
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operational sex ratios (Clutton-Brock and Parker 1992;
Parker and Simmons 1996). In a situation where female
reproduction is limited by access to mates but not by fecun-
dity, females compete for mates more intensely than do
males, and sometimes even develop sexual ornaments for
which males show preferences (Rosenqvist 1990; Berglund
and Rosenqvist 2001).

Most cardinalfishes (Apogonidae), in which males alone
provide mouthbrooding, also show characteristics of sex-
role reversal. In this group, the potential reproductive rate
is lower in males because their reproduction is restricted by
the buccal space and the developmental time of embryos
(Okuda et al. 1998). As a result of female-biased opera-
tional sex ratios, mating competition is more intense
among females (Okuda and Yanagisawa 1996b). Courtship
behaviors are also performed by females more vigorously
(Thresher 1984; Kuwamura 1985, 1987).

The subject species,

 

 Apogon notatus

 

, is a gregarious car-
dinalfish, which inhabits shallow waters of the northwest
Pacific (Hayashi 2002). In this fish, sex roles are extraordi-
nary. A few months before the breeding season, females
exclusively establish breeding territories on the boulder
substrata, where they simultaneously invite a prospective
partner from conspecific shoals (Kuwamura 1983). Within
pairs, the females play a leading role in courtship and in
attacks against conspecific intruders (Okuda 1999b). While
maintaining the breeding territories to spawn repeatedly
throughout the breeding season (June–September), females
usually change mates in each spawning (Okuda 1999b). This
is because females can enhance their reproductive rate by
remating quickly with another male ready to mouthbrood,
as in some other cardinalfishes (Okuda and Yanagisawa
1996b; Okuda 1999a). In terms of such reproductive
features, Clutton-Brock and Vincent (1991) regarded

 

 A.
notatus

 

 as sex-role reversed. However, Okuda (1999b)
suggested that the sex roles of

 

 A. notatus

 

 would not be
reversed because its courtship-role reversal and female
territoriality were less likely to confer an advantage on
females in competing for mates. Furthermore, Okuda
(1999b) showed that the operational sex ratios of this fish
are male-biased and not female-biased. The male-biased sex
ratios in this species likely result from higher mortality for
females that incur a large energetic cost of territory main-
tenance as well as egg production (Okuda 2001). In theory,
it is predicted that sexual selection should act on males in
this fish.

Okuda (1999b) also found male

 

 A. notatus

 

 has a pro-
trudent lower lip, which is not shared by other cardi-
nalfishes. According to the current theory predicting that
sexual ornaments should be expressed by the more abun-
dant sex, this trait is expected to serve as a sexual ornament.
In the present study, the main aim was to explore the func-
tion of the protrudent lip in male

 

 A. notatus

 

, posing the
following questions: Does the lower lip influence sexual
attractiveness, and if so, does this trait honestly signal male
quality?

 

Methods

 

Morphological measurements

To take morphological measurements, we used specimens
of 

 

Apogon notatus

 

 collected monthly at Murote Beach,
Shikoku Island, Japan, from February 2000 to January 2001.
A sampling design is shown in Table 1. This sample size was
less likely to affect the population of this fish because its
abundance was very high. In addition, since the sampling
areas were several hundred meters away from a quadrat for
subsequent field observations, the sampling did not have
substantial effects on results of selection gradient analysis
(see below).

For each fresh specimen, we took magnified photographs
of the lips in lateral and dorsal views, using a digital camera
(COOLPIX950, Nikon, Japan) under a dissecting micro-
scope. The digital images were then scanned by image anal-
ysis software (NIH image, National Institutes of Health,
USA). We measured the length (LLL) and width (LLW) of
the lower lip in a dorsal view (Fig. 1) and the thickness of
the upper lip (ULT) in a lateral view to the nearest 1 

 

m

 

m.
Digital images of the yellow spot on the lower lip (Fig. 1)
were processed by an image editing software (Adobe Pho-
toshop, Adobe System, USA) and those yellow spot areas
(YSA) with a brightness over 80 (black 

 

=

 

 0, white 

 

=

 

 100)
were measured.

We also measured nine morphological characteristics
with a pair of calipers to the nearest 0.1 mm: standard
length (SL), body height (BH), first dorsal fin length
(1DFL), second dorsal fin length (2DFL), average length of
the right and left pectoral fins (PFL), average length of the
right and left ventral fins (VFL), anal fin length (AFL),
upper caudal fin lobe length (UCFL) and lower caudal fin
lobe length (LCFL).

These morphological measurements were compared
between the sexes with a two-factor ANCOVA incorporat-
ing sex and month as factors. Since SL is significantly larger
in males than in females (two-factor ANOVA, sex:

 

 df

 

 

 

=

 

 1,

 

Table 1.

 

The number of male and female specimens of

 

 Apogon notatus

 

and their standard length

Year Month Male length Female length

 

n

 

Mean 

 

±

 

 SD

 

n

 

Mean 

 

±

 

 SD

2000 Feb 19 83.48 

 

±

 

 3.62 21 80.48 

 

±

 

 3.86
Mar 20 79.25 

 

±

 

 3.84 20 79.50 

 

±

 

 4.93
Apr 20 84.27 

 

±

 

 3.48 18 82.88 

 

±

 

 3.26
May 20 83.32 

 

±

 

 3.47 20 81.07 

 

±

 

 4.00
Jun 20 83.93 

 

±

 

 3.04 20 79.98 

 

±

 

 3.18
Jul 20 82.31 

 

±

 

 2.67 20 81.51 

 

±

 

 3.20
Aug 20 84.09 

 

±

 

 2.60 20 81.23 

 

±

 

 2.48
Sep 20 83.22 

 

±

 

 2.38 18 80.77 

 

±

 

 2.62
Oct 21 84.12 

 

±

 

 3.79 18 79.76 

 

±

 

 2.46
Nov 19 82.54 

 

±

 

 2.51 21 80.02 

 

±

 

 3.08
Dec 20 81.50 

 

±

 

 4.49 20 78.77 

 

±

 

 3.67
2001 Jan 21 83.53 

 

±

 

 3.07 19 80.78 

 

±

 

 2.86
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F

 

 

 

=

 

 60.95,

 

 P

 

 

 

<

 

 0.001, month:

 

 df

 

 

 

=

 

 11,

 

 F

 

 

 

=

 

 4.23,

 

 P

 

 

 

<

 

 0.001;
Table 1), these morphological variables were compared
after adjusting for the covariate, SL, provided that there was
no significant interaction between sex and SL. We further
examined the seasonal pattern of sexual dimorphism
(sex 

 

¥

 

 month interaction) only if these two factors did not
interact with SL.

Field observations and selection gradient analysis

We made field observations in relation to female mate
choice. A small proportion of males were captured from
large shoals of

 

 A. notatus

 

 in a 10 

 

¥

 

 20-m quadrat on the
boulder slope of Murote Beach in late March 2000,  the
beginning of female territory settlement. We selected adult
fish from the largest size class of a bimodal distribution
because small adults, 1-year-old fish, have a reproductive
schedule different from that of large adults, delaying
reproduction about 1 month (Okuda 1999b; N. Okuda,

unpublished data). We marked these males underwater by
hypodermically injecting the VIE (Visible Impact Fluores-
cent Elastomer; Northwest Marine Technology, USA) in
three colors laterally before releasing them at the capture
sites. This marking technique has least effect on their behav-
ior and reproductive schedule (Okuda 1999b).

We censused the quadrat every 2 or 3 days, during the
period from 3 April to 27 May, when the earliest spawnings
were observed in this population. In each census, we
recorded the location of marked males and the dates they
were solicited by territorial females and became paired.
During the period 29–31 May, we captured 28 marked males
inhabiting the quadrat. In the laboratory, we took photo-
graphs of their lips and measured their morphological char-
acteristics, according to the above methods. Six marked
males could not be observed consecutively in the quadrat,
so that we have no reliable data on when they became
paired. These data were thus excluded from the subsequent
analysis.

For the remaining 22 males, we performed a selection
gradient analysis to measure the direct forces of phenotypic
sexual selection on their morphological characteristics
(Lande and Arnold 1983; Arnold and Wade 1984). We used
a survival regression analysis with a proportional hazard
model for multivariates (statistical package: StatView 5.0),
which detects factors affecting the time of occurrence of
any event, i.e., pairing in this case. In this model, we in-
corporated days from the onset of observations to pairing
as the time variable and morphological measurements
as covariates. Cases in which marked males remained
unpaired until the end of the observations were treated as
censored data. We also incorporated wet body weight, but
not dry body weight, as a covariate because males may
retain water in their soma to pretend robustness. Prior to
the analysis, the body weight and the yellow spot area were
transformed into a linear dimension by taking the cube root
and square root, respectively. Since there were strong cor-
relations among the body weight (BW), BH and SL (BW
vs SL:

 

 r

 

 

 

=

 

 0.90, BH vs SL:

 

 r

 

 

 

=

 

 0.76, BW vs BH:

 

 r

 

 

 

=

 

 0.86), we
substituted residuals of the BW and BH against the SL for
covariates to reduce the effect of colinearity on the multiple
regression analysis (Reist 1985). The results were obtained
using a full model and a reduced model with a stepwise
method.

To examine the condition-dependence of sexual orna-
ments, we measured somatic condition for each marked
male. We dissected fish to part the liver, gonad and fat body
(i.e., a fatty tissue enveloping the viscera). These three parts
and the eviscerated carcass from which gut contents were
removed were dried at 60°C for 24 h and weighed to the
nearest 0.1 mg. After the measurements, we calculated four
indices: hepatosomatic index (HSI) 

 

=

 

 100 

 

¥

 

 liver weight /
total body weight, fat body-somatic index (FSI) 

 

=

 

 100 

 

¥

 

 fat
body weight / total body weight, condition factor
(K) 

 

=

 

 10

 

3

 

 

 

¥

 

 total body weight / TL

 

3

 

 and gonadosomatic
index (GSI) 

 

=

 

 100 

 

¥

 

 gonad weight / total body weight
(Okuda 2001). These indices were incorporated as explan-
atory variates into a model of stepwise multiple regression
against the ornament size.

 

Fig. 1.

 

Photographs of lower lip of female (

 

A

 

) and male (

 

B

 

) of

 

 Apogon
notatus

 

 in a dorsal view.

 

 LLL

 

 is the lower lip length (from the tip to
posterior margin),

 

 LLW

 

 the lower lip width (between two pit organs
opened into the mandibular canal) and

 

 YSA

 

 the area of yellow spot on
the lower lip (

 

whitish area

 

)
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Results

 

Sexual dimorphism

From comparison of 12 morphological characteristics
between sexes, we found that BH was significantly higher
in females than in males and that all fins were longer in
females (Table 2). Males, in contrast, had a greaterULT
than females (Table 2). The regression slopes of the LLL
and the YSA against SL were significantly different between
the sexes (ANCOVA, sex 

 

¥

 

 SL interaction, LLL:

 

 df

 

 

 

=

 

 1,

 

F

 

 

 

=

 

 4.38,

 

 P

 

 

 

<

 

 0.04; YSA:

 

 df

 

 

 

=

 

 1,

 

 F

 

 

 

=

 

 4.13,

 

 P

 

 

 

<

 

 0.04). All but
pectoral fins were consistently longer in females throughout
the year, while the upper lip was consistently thicker in
males (Table 2). The female PFL proportional to SL showed
a tendency to increase during the winter season and subse-
quent territory settlement, in contrast to the less seasonally

variable male PFL (Fig. 2A). Among males, the lower lip
characters, LLL, LLW and YSA, were developed markedly
during the breeding season (Fig. 2B–D).

Sexual ornament and condition-dependence

For 22 marked males, we observed the earliest pairing on
12 April. Of them, three remained unpaired until 27 May,
the end of the observation. The selection gradient analysis
with a full model showed that an increase in the LLL and
the AFL shortened the time to pairing (Table 3). With a
reduced model, however, it was concluded that males with
a longer and wider lower lip became paired earlier
(Table 3).

LLW positively correlated with HSI (

 

F

 

 

 

=

 

 9.41) and K
(

 

F

 

 

 

=

 

 4.94; Stepwise multiple regression analysis,

 

 R

 

 

 

=

 

 0.54,

 

F

 

2,25

 

 

 

=

 

 5.14,

 

 P

 

 

 

<

 

 0.02), but LLL did not correlate with any

 

Table 2.

 

Sexual dimorphism and its seasonal pattern (sex 

 

¥

 

 month interaction)

 

a

 

 Not applicable to ANCOVA because there exists significant sex 

 

¥

 

 SL interaction (see text)

Character Sexual dimorphism Seasona pattern

Male Female

 

F P F P

 

Mean 

 

±

 

 SD Mean 

 

±

 

 SD

BH (mm) 28.87 

 

±

 

 1.07 29.24 

 

±

 

 1.07 13.56 0.001 1.22 0.27
1DFL (mm) 11.94 

 

±

 

 0.78 12.29 

 

± 0.78 22.23 0.001 0.60 0.83
2DFL (mm) 17.69 ± 0.85 18.05 ± 0.85 19.81 0.001 0.68 0.76
PFL (mm) 21.70 ± 0.87 22.38 ± 0.87 67.73 0.001 2.82 .001
VFL (mm) 17.88 ± 1.01 18.22 ± 0.84 19.72 0.001 1.66 0.08
AFL (mm) 15.65 ± 0.79 16.02 ± 0.79 24.29 0.001 1.28 0.23
UCFL (mm) 21.75 ± 1.17 22.01 ± 1.17 5.40 0.02 0.63 0.80
LCFL (mm) 21.21 ± 1.27 21.49 ± 1.24 5.59 0.02 0.92 0.52
ULT (mm) 888.8 ± 121.5 863.7 ± 121.6 4.79 0.03 1.23 0.27
LLL (mm) NAa  15.03 0.001
LLW (mm) 872.2 ± 169.3 856.8 ± 169.6 0.93 0.34 2.13 0.02
YSA (mm2) NAa  9.82 0.001

Table 3. The selection analysis of male characters affecting the time to pairing

Character Full Reduced

Coefficient c2 P Coefficient c2 P

SL -0.40 1.40 0.24    
BW 10.48 0.39 0.53    
BH -0.34 0.21 0.65    
1DFL -0.39 0.85 0.36    
2DFL -1.22 1.70 0.19    
PFL -0.55 0.41 0.52    
VFL -0.07 0.01 0.93    
AFL 3.01 5.57 0.02    
UCFL -0.30 2.45 0.12    
LCFL 0.59 2.88 0.09    
ULT -0.18 0.00 0.98    
LLL 11.69 6.76 0.01 3.47 5.77 0.02
LLW 0.04 0.00 0.99 3.29 6.23 0.01
YSA -0.13 0.00 0.97    
Likelihood ratio test c2 = 27.07,  df = 14, P = 0.02 c2 = 10.11,  df = 2, P = 0.006
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condition indices. When the product of LLL multiplied by
LLW, which reflects a surface area of lower lip in a dorsal
view (Fig. 1), was incorporated as a dependent variable, the
stepwise multiple regression model showed a significantly
positive correlation between the lower lip size and HSI
(R = 0.45, F1,26 = 6.54, P < 0.02; Fig. 3). This correlation was
unchanged after considering the effect of body size on the
lower lip size.

Discussion

In Apogon notatus, males had a protrudent lower lip that
was expressed markedly during the breeding season. In
paternal mouthbrooding cardinalfishes, males often have an
enlarged buccal morphology (Lachner 1953; Omori and
Takahashi 1980). In a congener A. doederleini, it was found
that sexual differences in buccal morphology are due to a
flexible morphological change caused by mouthbrooding
actions (Okuda et al. 2002). Such a flexible morphological
change is associated with sexual dimorphism in the jaw
osteology, which involves extension of the buccal space.
However, the seasonally protrusible lip found in male
A. notatus is not shared by other cardinalfishes so far
reported, suggesting that it is not a functional trait for
mouthbrooding.

Our field study revealed that male A. notatus with a
longer and wider lower lip became paired earlier prior to
the breeding season. When studying mate choice with an
observational approach, field workers often have difficulty
in separating intersexual selection from intrasexual selec-
tion (but see Moore 1990; Warner and Schultz 1992). The
selection analysis can determine the direct forces of overall
selection of characteristics, but not the relative importance
of different sources of selection. One may expect that the
lower lip of male A. notatus is an intrasexually selected trait
that functions to signal dominant status among males com-
peting for mates, as seen in some birds (Jones 1990; Jones
and Hunter 1999). However, there are some reasons to
believe that the lower lip is not intrasexually selected. In
this fish, males never supplant already paired males: they

Fig. 2. Seasonal changes in sexual dimorphisms. PFL is the pectoral
fin length (A), LLL the lower lip length (B), LLW the lower lip width
(C), and YSA the yellow spot area (D) for males (closed circles) and
females (open circles). With the two-factor ANCOVA, the adjusted
mean and SD are given

Fig. 3. Condition-dependence of lower lip size (the product of LLL
multiplied by LLW) on the hepatosomatic index (HSI) of marked
males
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are driven away by a territorial female as soon as they
approach a pair (Okuda 1999b). To be paired, the males
form aggregations in mid water, where they wait for a
female’s invitation to her territory, rarely displaying aggres-
sions among them, in spite of their close proximity and
frequent encounters (Okuda 1999b). These pieces of evi-
dence suggest that intrasexual competition for mates is of
less importance in male A. notatus. Moreover, our selection
analysis showed that variance in first pairing dates among
males cannot be explained by variance in their body length
and weight. Therefore we conclude that male pairing suc-
cess greatly depends on female preference for a larger orna-
mental lip.

In the following discussion, we concern ourselves with
two questions in relation to the evolution of male ornamen-
tal lip in this fish. First, what is the mechanism by which the
lower lip signals its holder’s quality? Among males, the
lower lip size reflected their HSI, a proportional weight of
liver to total body. In this fish, the liver is the main lipid
reservoir and shows great temporal variation in weight,
peaking in May (Okuda 2001). Since the lip protrusion
resulted from accumulation of labial subcutaneous fat
(N. Okuda, personal observation), it is probable that males
allocated a portion of their lipid reserves to lip protru-
sion to advertise their quality. Although such a condition-
dependent expression of male ornament is common in
species with conventional sex roles (Andersson 1994), male
ornamentation in A. notatus was not as exaggerated as
found in typical role-conventional species. A modest and
honest advertisement is theoretically predicted to evolve in
species where parental care is provided by males and their
opportunities for multiple matings are limited (Kokko
1998), the very case for this fish.

Second, what do females gain by choosing males with a
larger lower lip? One possible answer is that such males
may be good parents who can mouthbrood eggs effectively.
In cardinalfishes, mouthbrooding males sometimes canni-
balize their own brood entirely (Okuda and Yanagisawa
1996b; Okuda 1999a, 2000) and the incidence of this canni-
balism is high when they are in poor somatic condition
(Okuda and Yanagisawa 1996a). Females can reduce the
risk of filial cannibalism by choosing males in better condi-
tion. However, it is less likely in A. notatus because male
somatic condition is, on average, good in May (Okuda
2001), the pre-breeding month when females exert mate
choice. In fact, brood loss to filial cannibalism is negligible
early in the breeding season of this species (Okuda 2000).

Another possible benefit deriving from such female
preference for larger lipped males is the avoidance of par-
asitically burdened mates, as reported in studies of parasite-
mediated sexual selection in animals with conventional sex
roles (reviewed by Clayton 1991). In A. notatus, both males
and females are frequently infected by gonad-parasitic nem-
atode (N. Okuda, unpublished data). This parasite burdens
the sexes differently: the more nematodes in a female, the
fewer the number of eggs in its ovary, while heavily parasit-
ized males have a lowered somatic condition. Thus, the male
lower lip may serve as an indicator of parasite infection that
cannot be inspected directly by females.

Although our results support the prediction that sexual
selection will act on males in A. notatus, we cannot make
conclusion as to which sex is more sexually selected.
Morphological measurements revealed that females had
longer fins than males. These dimorphisms, although mea-
surable, were too small to be detected by the naked eye, and
most of them were seasonally constant, suggesting a weak
selection in female morphological characteristics. The
exception to this was the elongation of female pectoral fins
during the competitive period of territory settlement. An
analysis of the phenotypic selection on female fins will be
helpful in understanding overall sexual selection in this fish
with extraordinary sex roles in that its operational sex ratio
is male-biased but breeding territoriality is exclusively
female.
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