メンデルの法則:本日のメニュー

- 1. メンデルの法則
 - 優劣の法則
 - 分離の法則
 - 独立の法則
- 人に見られるメンデル遺伝
- 2. メンデルの法則が合わない例
 - 優劣の法則に合わない遺伝
 - 独立の法則に合わない遺伝
- 3. メンデルの法則のメカニズム
 - Mitosis
 - Meinsis
 - 染色体と組換え
 - モルガンの突然変異研究

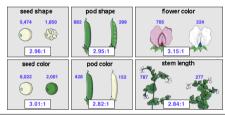
メンデルの法則

メンデルの遺伝の法則は、発表された当時(1865)は 誰からも理解されなかった、早すぎた天才の悲劇であ る。1900年になってド・フリース、チェルマク、コ レンスの3人によって、独立にメンデルが注明が再発 見され、コレンスによって3つの法則にまとめられた。 その後、染色体研究の進展に伴い、遺伝子が染色体上 の実体であることが認められ、現在の遺伝子の考えに タ票性本

Gregor Mendel (1822-1884) オーストリアの修道院の牧師

メンデル以前に 遺伝の法則が発見されなかった理由

親と子はよく似ていることから、遺伝の概念はすでにあった。


純系を使った交配実験が行われなかったので、明瞭な結果が 得られなかった。

メンデルは、実験を始める前に数多くの遺伝的な特徴について、純系を得るための作業をおこなった。自家受粉による系統選抜。

そして最終的に7つの、明らかに対照的な(対立する)特徴(**形質、caharacter**)を持つエンドウの種子を選んだ。

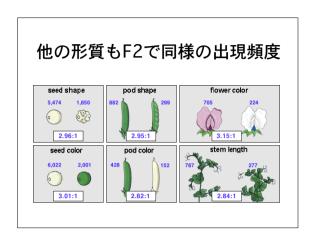
メンデルが利用した形質

- 1) 黄色と緑色の種子(seed color)、 2) 丸い様子としわあるの種子(seed shape)、 3) 黄色と緑色のさや(pod color)、 4) 背文が高いか低いか(stem length)、 5) さやが膨らんでいるか平たいか(pod shape)、 6) 花の色が紫色か白色か(flower color)、 7) 花が茎の頂端につくか茎全体につくか(flower position on stem)

メンデルが行った実験

P世代 Parental generation

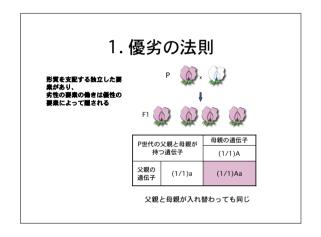
F1世代 (first filial generation

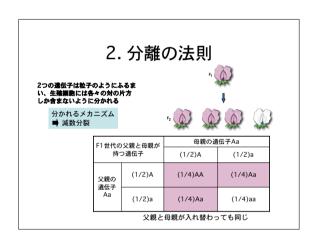


F2世代 (second filial generation)

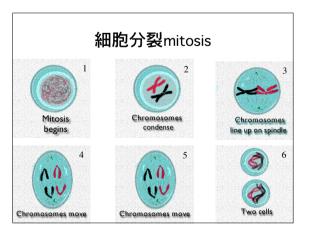
705

224

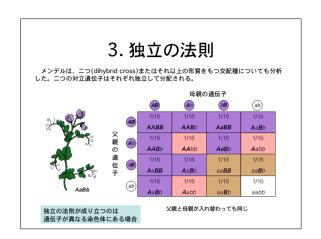



メンデルが考えた説明

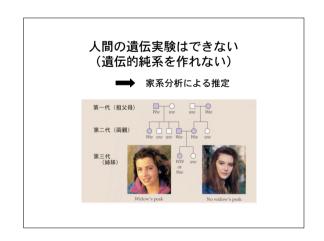
- (1) 形質を支配する要素(現代語法の遺伝子とほぼ 同じ)がある。
- (2) 要素は粒子のような形で一対存在し、父親と母親から一つずつ受け継ぐ。
- (3) F1では片親からの要素が、もう一方の要素の性質を覆い隠してしまう。

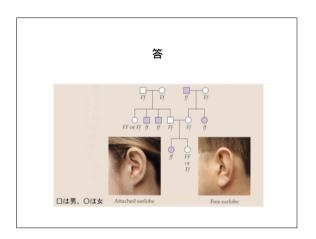

これらの3つの仮定で 優劣の法則、分離の法則が説明される _{法則の命名はコリンス}

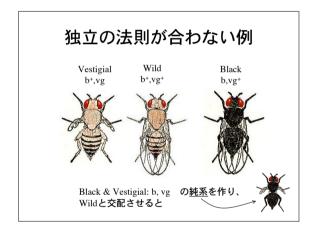
> 優性(dominant): 英語の意味は「現れる」 劣性(recessive): 英語の意味は「隠れる」

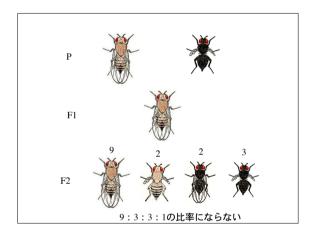


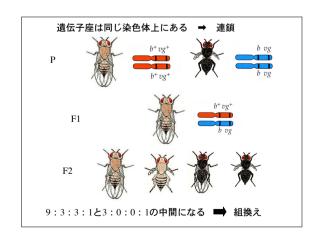
Mitosis (通常細胞の分裂) と Meiosis (生殖細胞の分裂:減数分裂)

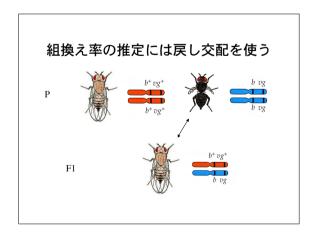


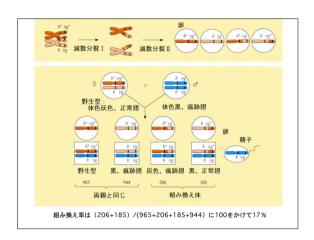


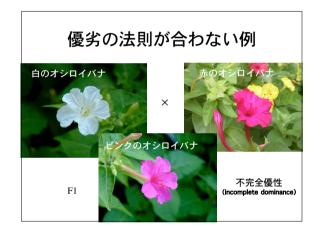

メンデルの法則が合わない例は たくさんある

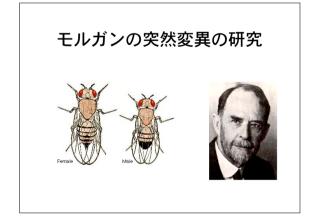

メンデルの法則が成り立つ条件

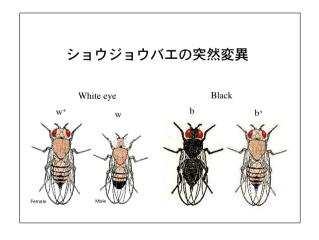

- (1) はっきりとした対立遺伝子である (2) 遺伝子は別の染色体上にある

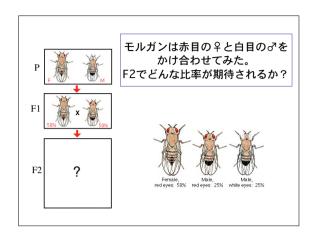

この条件が満たされないとき、優劣の法則や独立の法則は成り立たなくなる。分離の法則だけは一般に成り立つ。

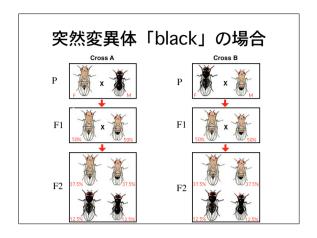

しかし、メンデルが考えた原理を少し拡張すれば、多くの場合は説明がつく。 **拡張**: (1) 優劣の法則は表現型の問題で、遺伝子型に関しては影響を受けない。 (2) 染色体と組換えを考慮する。(3) 対立遺伝子は1対とは限らない。(4) 同じ形質に多くの遺伝子基が関与するかもしれない。(5) 性染色体



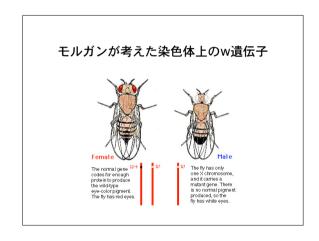


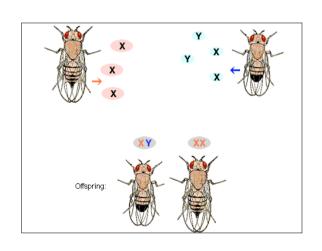


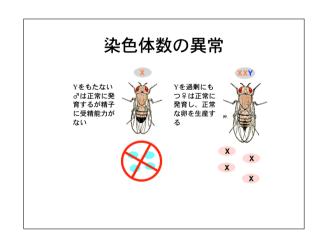



メンデルの法則が当てはまら ない、その他の例

- 複対立遺伝子 (Multiple gene)
 ひとつの遺伝子座に3種類以上の遺伝子が関わる場合 ABO血液型、類冠 (単冠pprr、バラ冠ppRRかppRr、マメ冠PPrrか Pprr、クルミ冠PPRR、PpRR、PPRr、PpRr)
 ポリジーン遺伝 (Polygene)
 多数の独立した遺伝子対が同じ形質に関わる場合 BE BIOCA
- 身長、肌の色 ・ 伴性遺伝(sex-linked inheritance) 性染色体上にある遺伝子が関わる場合







参考

英語で学べるモルガン遺伝学

ニュージャージー州立大学の 「Morgan Genetic Tutorial」サイト キーワードで見つけるか、 http://morgan.rutgers.edu/MorganWebFrames/htmldocs/contents.php

クイズもあっておもしろい。 この講義で、ショウジョウバエに関する図表を拝借しています。

次回は卓上計算機を持参のこと。