生態学 | (石田厚)

一植物の生理生態学をベースにした生態学ー

- 1) 5月18日 生態系:大気と気象
- 2) 5月25日 個体レベル、群落レベルの物質生産
- 3) 6月01日 個葉のガス交換・エネルギー交換
- 4) 6月08日 植物の水利用特性
- 5) 6月15日 植物の通水性と形態

「植物にとっての水の重要性」

1)細胞質の主要構成物質

草本の重量の90-95%が水 木本では約50%が水 様々な溶質を溶解することができる

→化学反応の場

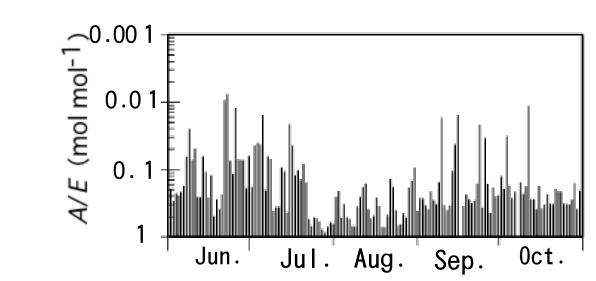
常温で液体

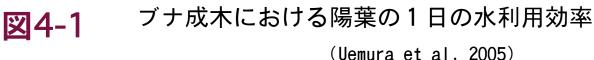
比熱が高い(水: 0.9986 cal g⁻¹ K⁻¹ at 20 ℃)

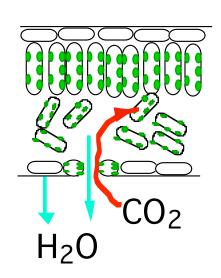
→温度変化が少ない

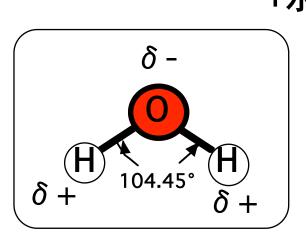
表4-1

	分子量	融点(℃)	沸点(℃)
CH ₄	16	-184	-161
NH_3	17	-78	-33
H_2O	18	0	100
HF	20	-92	19

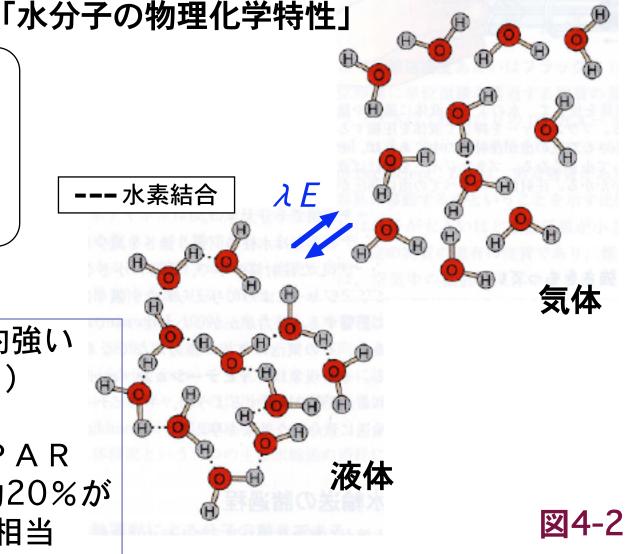

Sutcliffe 「Plants and Water」 (1968) The Camelot Press, Table 2 より


「植物にとっての水の重要性」


- 2) CO2を獲得するため気孔を開くと、水が出てしまう
 - → 植物のジレンマ(気孔制御の問題)
 CO2 1 molの固定に対し、約100molの水を消費


畑や森林の水利用効率:収量(光合成量)/蒸発散量

個葉光合成の水利用効率:A(光合成速度)/E(蒸散速度)


水分子の模式図

水素結合は比較的強い (20-30kJ mol⁻¹)

 \rightarrow

・高い気化熱。PARエネルギーの約20%が潜熱(*λE*) に相当

・凝集力により表面張力 や毛管現象を起こす

西谷/島崎監訳(2004) テイツ/ザイガー 植物生理学 培風館 図3.4より

「水の移動」

- 1) 水は水ポテンシャル(ψ) の高い方から低い方へと動く
 → 水ポテンシャルの差が Driving Force
- 2) 純水がもっとも高く、基準値として0と定義する

$$\psi = \frac{\mu_{\mathsf{W}} - \mu^{\mathsf{O}}_{\mathsf{W}}}{V_{\mathsf{W}}}$$

 μ^0_{w} : 等温、等圧下での純水の

化学ポテンシャル → 0と定義

単位 J mol-1 m³ mol-1

*μ*_w: その系の水ポテンシャル

 $= J m^{-3}$

 $= kg m^2 s^{-2} m^{-3}$

 V_w : その系の水のモル体積

 $= kg m^{-1} s^{-2}$

= Pa

 $\mu_{W} = (\partial G/\partial n)$ n: 等温、等圧で加えた純水のモル数

G:系のギッブスのフリーエネルギー

物質の移動の仕方

•1)マスフロー(mass flow)

風圧や、水圧で、物質全体が押されて移動する状態。例えば、乱流状態の空気や、パイプの中の水の流れ。(長距離輸送)

道管の中の水は、水ポテンシャルという圧力差で動くので、これもマスフロー

•2) 拡散(diffusion)

外からの圧力はなく、系と系のとの間の物質の濃度差に従って、拡散によって分子が動く状態。前回の授業でやった蒸散や光合成。(短距離輸送)

「水ポテンシャルの要素」

水ポテンシャル(ψ) は、いろいろな要素に分解可能 $\psi = \psi_p + \psi_\pi + \psi_m + \psi_g$

ψ:水ポテンシャル(0から一値の範囲)

 ψ_p : 圧ポテンシャル(細胞だと+値)

 ψ_{π} :浸透ポテンシャル(0から一値) ψ_{π} = (n/V) R T

ψ_m:マトリックスポテンシャル (0 から-値)

ψg:重力ポテンシャル(0から+値)

 $\psi_{g} = \rho g h$ ρ : 水の密度, kg m⁻³

 $0.01 \text{ MPa m}^{-1} \text{ or } 0.1 \text{ bar m}^{-1}$

g: 重力加速度, m s⁻²

h: 高さ, m

→ 10mの高さの葉は、1 barのψgを持つ 1気圧 = 1013mbar = 1.013bar, 1 bar = 0.1MPa

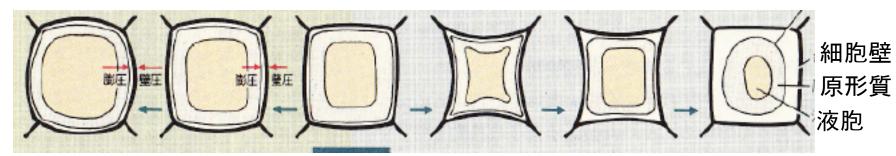
「植物細胞の水ポテンシャル:ψ_{leaf}」

 $\Psi_{leaf} = \Psi_{p} + \Psi_{\pi}$ (吸水力 = 膨圧 - 浸透圧)

 ψ_{leaf} :葉の水ポテンシャル(MPa)

 ψ_{n} :葉の圧ポテンシャル(MPa)

 ψ_{π} :葉の浸透ポテンシャル(MPa)

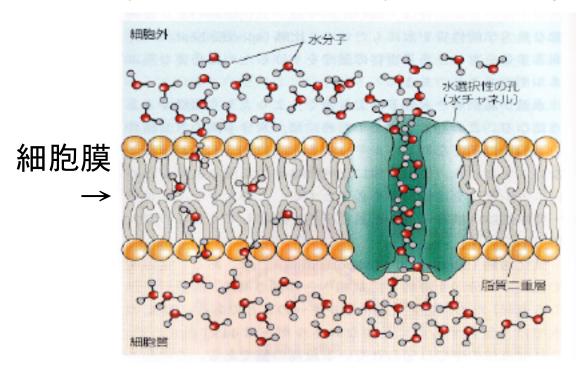

高いψの液 に浸けると

 ψ_{leaf} と同じ ψ 液 低い ψ の液に浸けると

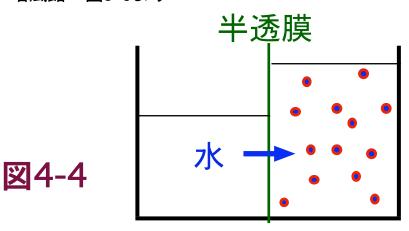
(純水 = Obar) (-10bar)

(-30bar)

原形質膜


細胞は圧ポテンシャル (膨圧)を保った状態

細胞は圧ポテンシャル を失い、しおれた状態


図4-3

小林(1980)「チャート式 新生物I」 数研出版 図2.26より作成

「細胞膜の水の透過性(単なる半透膜ではない)」

西村・島崎 監訳(2004)「テイツ/ザイガー 植物生理学」 培風館 図3.6より

- ・アクアポリン (水チャンネル) は1992年に発見され、P.アグレらに 2003年ノーベル化 学賞
- ・アクアポリン (膜タンパク) のリン酸化で オープン →開閉の制御
- アクアポリンの 量と活性で、細胞 膜の水の透過性は 制御されている

「浸透ポテンシャル: ψ_{π} 」

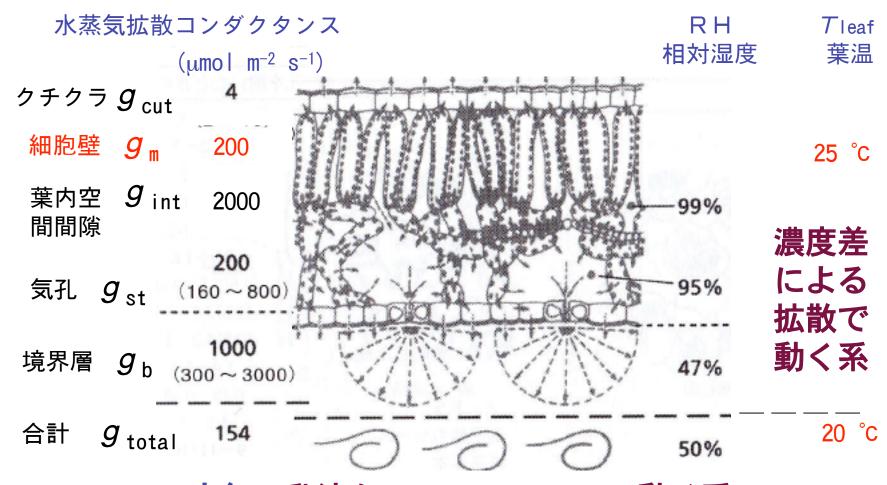
$$\psi_{\pi} = - (n/V) R T$$

Van't Hoff の式

n → イオン性の溶質の場合は解離した分子数 (n/V) はリッター当たりのイオン濃度

表4-2	RTとw_	(MPa)の温度依存性
22 2	$\mathcal{N} \mathcal{L} \Psi_{\pi}$	

温度 °C	<i>RT</i> I MPa mol ⁻¹	0.01 mol I ⁻¹	1 mol I ⁻¹	海水 MPa
0	2.271	-0.0227	-2.27	-2.6
10	2.354	-0.0235	-2.35	-2.7
20	2.437	-0.0244	-2.44	-2.8
30	2.520	-0.0252	-2.48	-2.9
40	2.604	-0.0260	-2.52	-2.9


→海水域のマング ローブの葉は、海 水よりも低い葉の 水ポテンシャルを 持っているはず :実際日中で $-2.4 \sim -4.0 \text{ MPa}$ (Rhashila et al. 2009)

$$R = 0.0083143 \text{ I MPa mol}^{-1} \text{ k}^{-1}$$

$$0 \, ^{\circ}C = 273.15 \, K$$
 $1 \, \text{bar} = 0.1 \, \text{MPa}$

「葉の蒸散Eと水蒸気コンダクタンス」

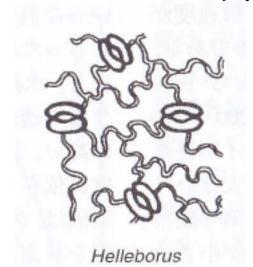
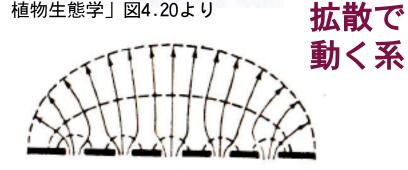

 $E = g_{total} (\psi_{leaf} - \psi_{air})$

図4-5 大気:乱流なのでマスフローで動く系

佐伯/館野 監訳 (2004) 「Larcher 植物生態学」シュプリンガー東京 図4.20より作成

「気孔からの蒸散」


(労 | 図/ 20 + 1)

濃度差

による

佐伯/館野 監訳 (2004) 「Larcher 植物生態学」図4.20より

(b)

図4-6

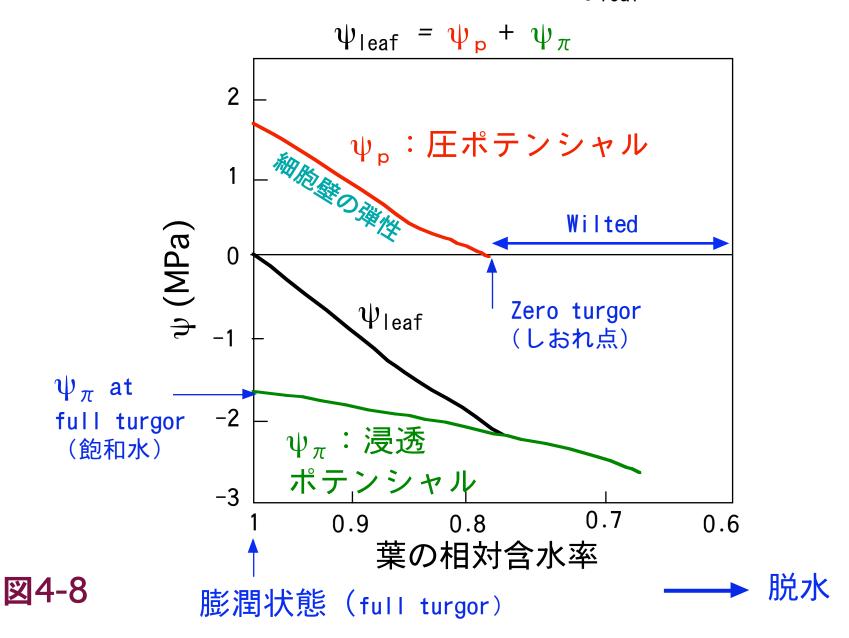
(a)

Sutcliffe (1968) 「Plants and Water」The Camelot Press Fig. 6-5 より

点線は、気孔から出る水蒸気圧の等圧線。(b)気孔間の距離が近いと、 気孔が閉鎖近くなるまで、気孔開度の違いによっても、蒸散は大きく 制御はされない可能性を示す。

「SPAC (Soil-Plant-Air Continuum) Model」

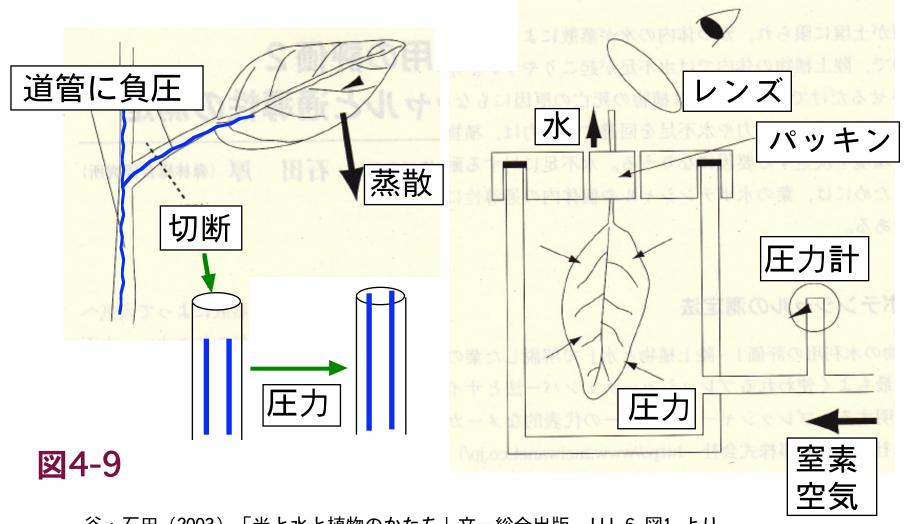
蒸散 \rightarrow 葉の脱水 \rightarrow ψ_{leaf} 低下 \rightarrow 吸水力: 水の凝集力があるから、水は上に引き上げられる


Flux = Conductance x Driving Force $E = K_{soil-to-leaf}(\psi_{soil} - \psi_{leaf})$ 道管内の水は マスフローと E: 蒸散速度(mol m⁻² s⁻¹) して動いている

ψ_{leaf}:葉の 水ポテンシ ャル(MPa)

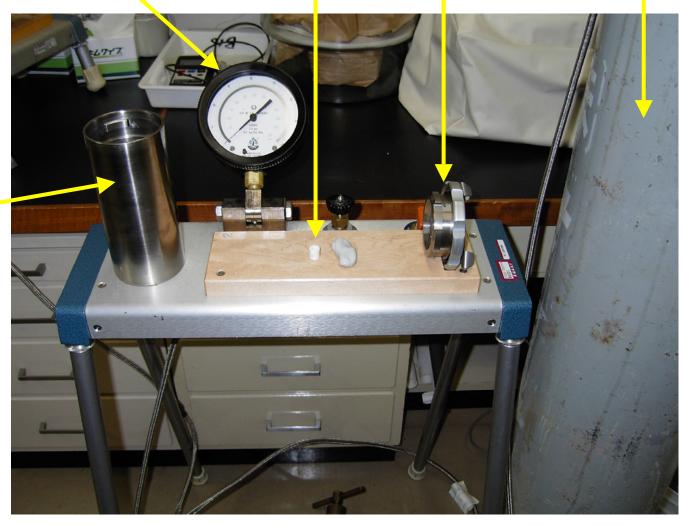
ψ_{soil}:土壌の 水ポテンシャ ル (MPa) K_{soil-to-leaf}: 土壌から葉への 通水コンダクタンス (mol m⁻² s⁻¹ MPa⁻¹)

図4-7


「葉の脱水による水ポテンシャル(ψ_{leaf})の低下」

「水ポテンシャル:ψ_{leaf}の測定法」

- 1) プレッシャチェンバー法
- 2) サイクロメータ法
- 3) プレッシャープルーブ法


「1) プレッシャーチェンバー法」 Scholander *et al*. (1965) Science

谷・石田(2003) 「光と水と植物のかたち」文一総合出版 111-6 図1 より

「プレッシャーチェンバーの写真」

圧力計 パッキン 蓋 ガスボンベ

チェン
バー

図4-10

米国 Soil Moisture Stress 社製

「2) サイクロメータ法」

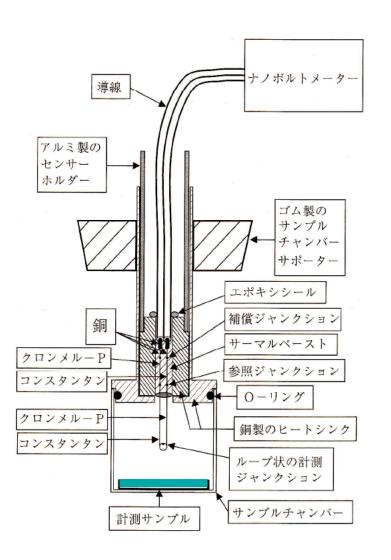
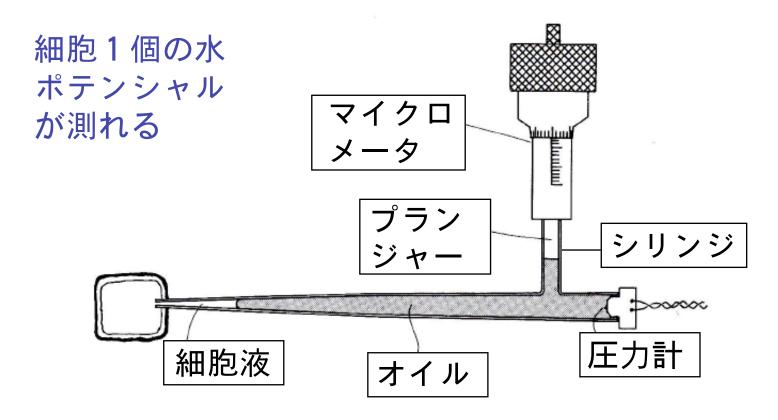


図4-11

野並 浩(2001)「植物水分生理学」養賢堂 図2-3 より

「サイクロメータの写真」



セル投入口

図4-13

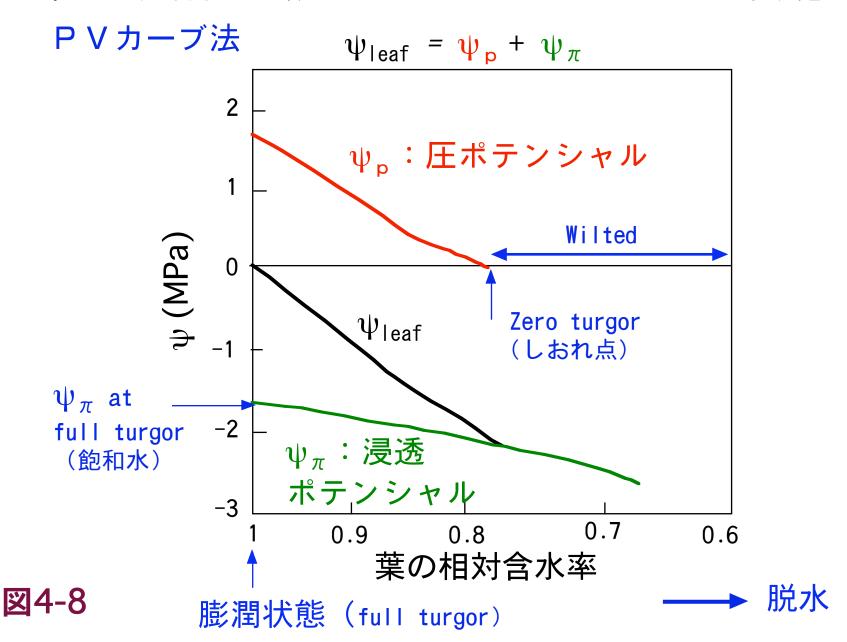
米国 Wescor 社製 5520型

「3) プレッシャープルーブ法」

翌4-14 Jones (1992) 「Plants and Microclimate」 Cambdride Fig. 4.4 より

まず圧ポテンシャルを測定し、ナノリッター浸透圧計で 浸透ポテンシャルを測定。体積の低下と圧ポテンシャル の変化から細胞壁の弾性も計算可能。

「プレッシャープルーブを使っているところ」


顕微鏡下での 柔らかい細胞 でないと測れ ない。

Canada Alberta Univ. Zwiakek 博士 の研究室にて

図4-15

「葉の水分特性の測定:プレッシャーチェンバーの利用」

「P-Vカーブ (Pressure-Volume Curve)法」 Scholander et al. (1965)

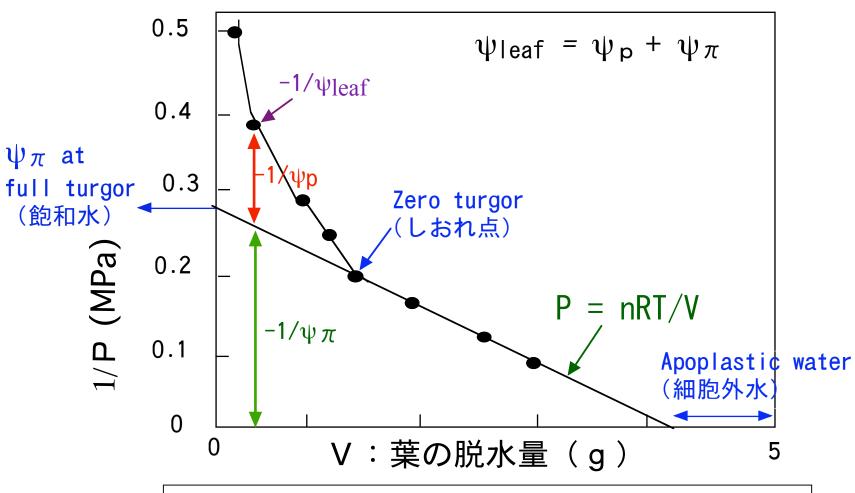
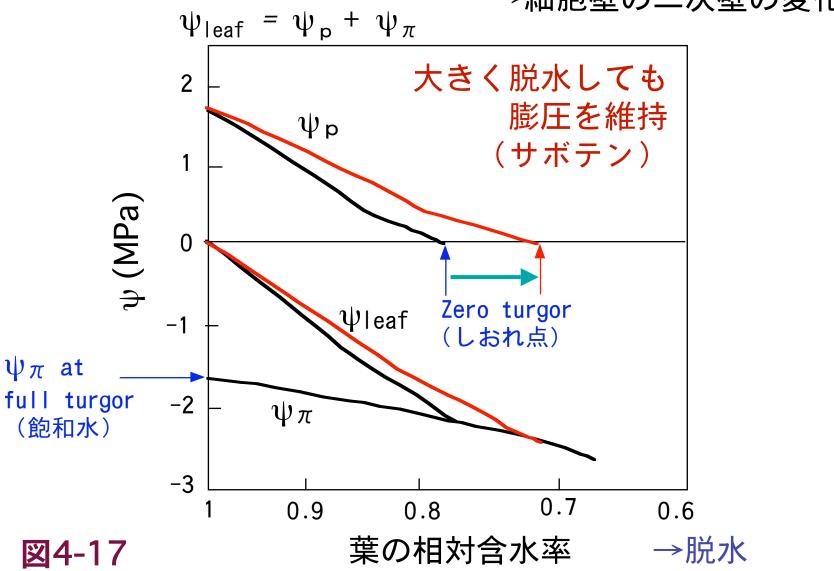
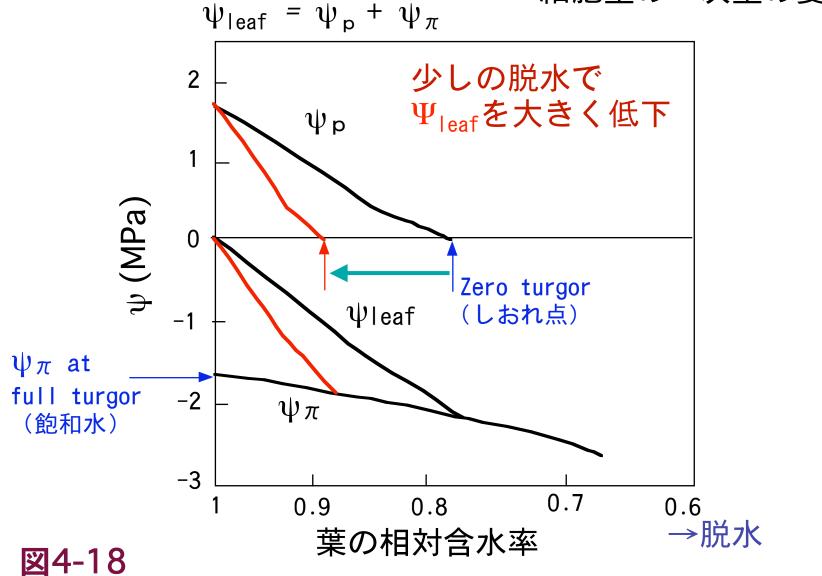
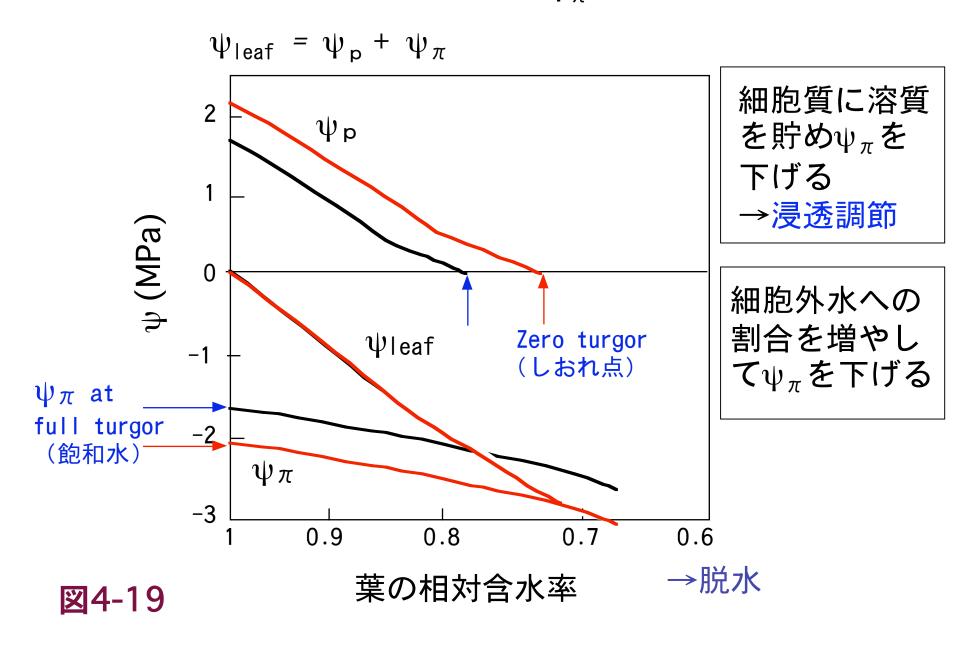



図4-16

葉を脱水させながら、脱水量(V)と水ポテンシャル(P)を測定し続ける


「葉の乾燥耐性 1)細胞壁に弾性を持たせる」

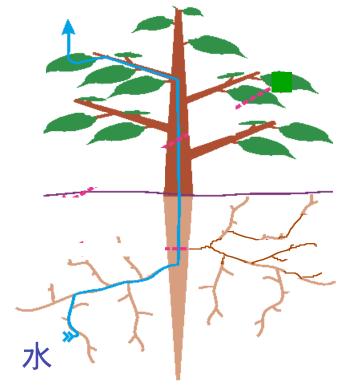
→細胞壁の二次壁の変化



「葉の乾燥耐性 2)細胞壁を堅くする」

→細胞壁の二次壁の変化

「葉の乾燥耐性 3) ψ_{π} を下げる」


「SPAC (Soil-Plant-Air Continuum) Model」

 $E = K_{\text{soil-to-leaf}} (\psi_{\text{soil}} - \psi_{\text{leaf}})$

蒸散することによって水ポテンシャルが低下→ 吸水力を生み出し、水は道管の中をマスフローと して引き上がられていく

E:蒸散速度(mol m⁻² s⁻¹)

ψ_{leaf}:葉の 水ポテンシ ャル (MPa) → P V 特性 の変化

K_{soil-to-leaf}: 土壌から葉への 通水コンダクタンス (mol m⁻² s⁻¹ MPa⁻¹)

ψ_{soil}:土壌の 水ポテンシャ ル (MPa)

図4-20

$$E = K_{soil-to-leaf} (\psi_{soil} - \psi_{leaf})$$

E:蒸散速度(mol m⁻² s⁻¹)

 ψ_{leaf} :葉の水ポテンシャル(MPa)

 ψ_{soil} : 土壌の水ポテンシャル(MPa)

K_{soil-to-leaf}:土壌から葉への通水コンダクタンス $(mol m^{-2} s^{-1} MPa^{-1})$

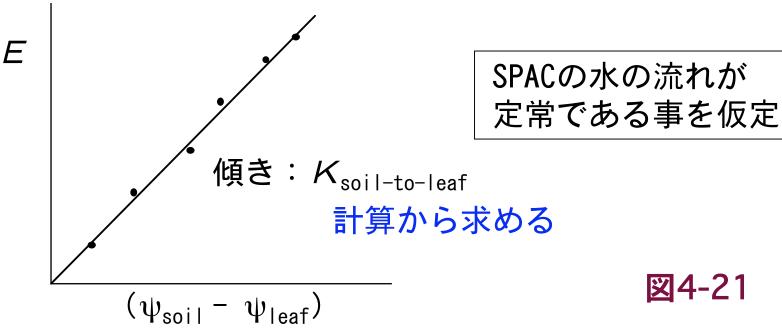
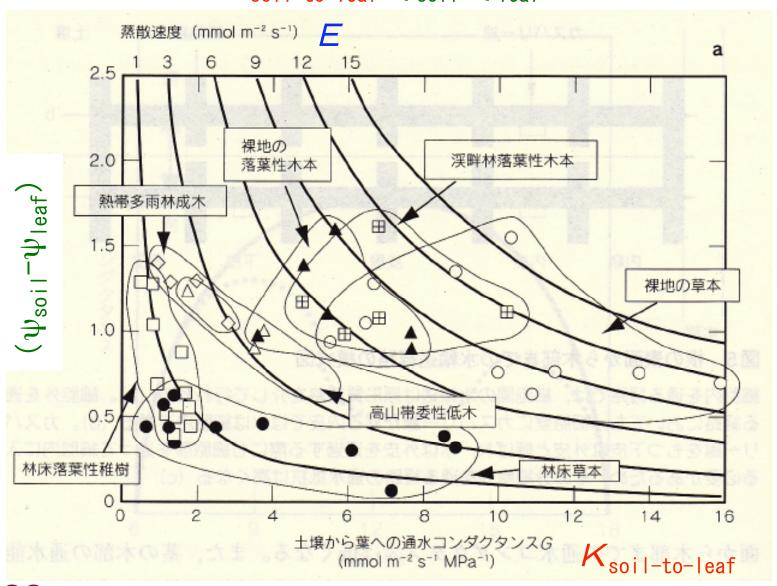



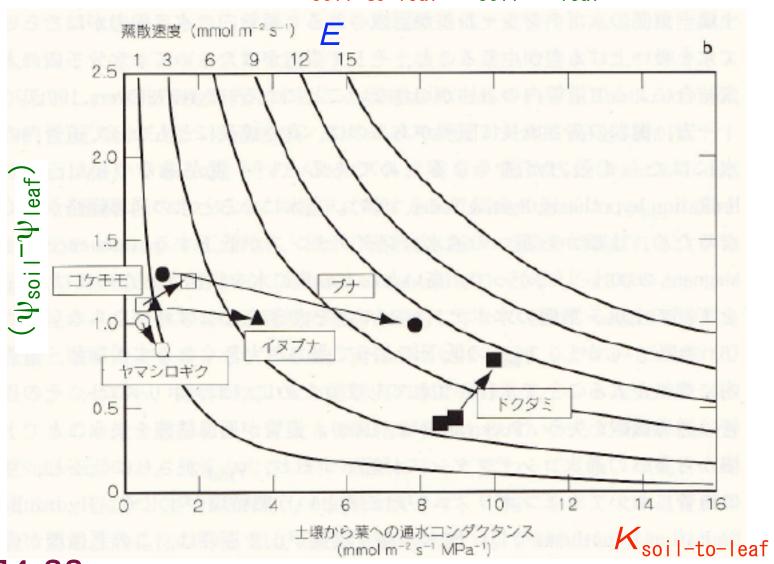
図4-21

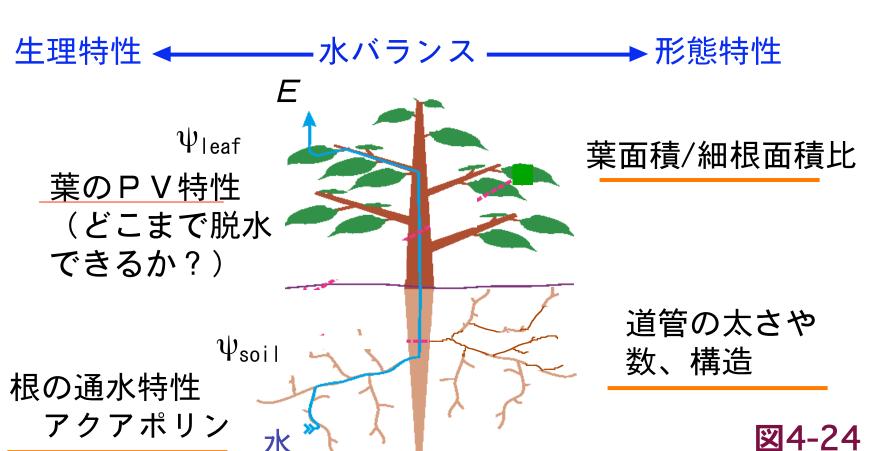
「野外の植物の晴れた日中の値」

$$E = K_{\text{soil-to-leaf}}(\psi_{\text{soil}} - \psi_{\text{leaf}})$$

「高蒸散環境に対する馴化(暗条件→明条件)」

 $E = K_{\text{soil-to-leaf}}(\psi_{\text{soil}} - \psi_{\text{leaf}})$




図4-23

石田・谷(2003) 「光と水と植物のかたち」文一総合出版 111-5 図6 より

「SPAC (Soil-Plant-Air Continuum) Model」

 $E = K_{\text{soil-to-leaf}} (\psi_{\text{soil}} - \psi_{\text{leaf}})$

K_{soil-to-leaf}: 土壌から葉への通水コ₎ンダクタンス (mol m-2 s-1 MPa-1)

生態学 | 一植物の生理生態一

「植物の水利用特性」

- 1) 植物のジレンマ:光合成を行うために気孔を開くと 水が抜けてしまう(水利用効率:*A/E*)
- 2) 水ポテンシャルの差と水の分子の凝集力で植物は吸水 水は圧力差でマスフローとして上がっていく
- 3) 水ポテンシャルの測定 プレッシャーチェンバー法: Scholander *et al*. (1965)
- 4) 葉の P V 特性馴化:圧ポテンシャルの維持する
- 5) 個体の水の流れ: SPACモデルと土壌から葉への通水コンダクタンス