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Abstract Our human-dominant world can be viewed as
being built up in two parts, social and ecological sys-
tems, each consisting of multi-level organizations that
interact in a complex manner. However, there are
knowledge gaps among those interactions. In this paper,
we focus on studies filling two types of gaps in the
socioecological system, some of which are case studies in
the East Asia region and others are discussed in a more
general context. First, we address the gaps between
different levels of organizations in ecological systems,
namely, (1) the importance of plant trait plasticity in
bridging evolution and ecology, (2) linking primary
producer diversity and the dynamics of blue carbon in
coastal ecosystems in the Asia–Pacific region, and (3)

research direction of climate change biology to fill the
gaps across evolution, community, and ecosystem. Also
included is (4) the gap between ecological monitoring
programs and theories, which also addresses the poten-
tial of citizen science. Second, we illustrate the gaps
between ecological and social systems through ongoing
development of an ecosystem management framework,
i.e., ecosystem-based disaster risk reduction. Finally, we
summarize the benefits of filling the gaps for ecologists
and society.

Keywords Blue carbon Æ Ecosystem-based disaster risk
reduction (ECO-DRR) Æ Citizen science Æ Climate
change-induced redistribution Æ Plant plasticity
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Introduction

Our human-dominant world involves two interacting
parts, social and ecological systems (Chapin et al. 2009). In
the social system, different organizations (citizens, scien-
tists, civil society, business and industry, and governments)
interact, resulting in diverse human actions. The ecological
system has a hierarchy of diverse entities and processes
(e.g., evolution, population, community, and ecosystem)
among levels of biological organization. Both systems have
various spatial and temporal scales. The two subsystems
interact; human actions impact ecological systems, whose
responses in turn affect human actions, forming a socioe-
cological feedback system. To maintain sustainability of
the earth ecosystem, research from a broad perspective is
required in future ecology study (Chapin et al. 2010;Future
Earth 2013; Itoh et al. 2017).

To develop a framework based on such a broad per-
spective, it is necessary to construct a map that highlights
the interrelationships among components in the socioeco-
logical system. At present, there are many gaps in the map,
owing todiversificationof science andgaps between society
and science. To bring the map closer to completion, it is
necessary to point out where the major gaps are located in
order that they will be bridged (Agrawal et al. 2007; Enoki
et al. 2014; Nakadai 2017).

This paper is the one of the achievements of the 5th
Japan-Taiwan Ecological workshop entitled ‘‘Filling the
Gaps: What’s missing in the genotype–phenotype-pop-
ulation-ecosystem continuum?’’, which was held in

November 2016 at Ryukoku University, Kyoto, Japan
(see details in Nakamura et al. in this volume). The
authors of the present paper formed part of the orga-
nizers and invited speakers of this workshop. These
authors, with their diverse research backgrounds, se-
lected some of the major gaps in ecological and inter-
disciplinary studies of socioecological systems. The
selected topics include not only general research ques-
tions in ecology but also case studies of ecological or
socioecological systems in Taiwan and Japan (Fig. 1).

In this paper, we focus on two types of gaps in the
study of socioecological systems (Fig. 1). In East Asia,
there is substantial biodiversity (Nakano et al. 2012), a
strong contribution to the global biogeochemical cycle
(Tian et al. 2013), large populations, and frequent nat-
ural disturbances (Wu et al. 2005).

The first gaps addressed are those between different
organization levels or disciplines that occur across wide
spatial scales in ecology, for which we introduce four
specific research topics as examples. The first topic ad-
dresses a gap between different disciplines, evolutionary
and ecological research, which is found in studies of
plant–herbivore communities. We discuss the possibility
that this gap may be filled by considering plant trait
plasticity (Gap 1). The second topic is the knowledge
gap between primary producer diversity and the
dynamics of ‘‘blue carbon’’ in coastal ecosystems and its
impacts on the carbon budget, especially in the Asia–
Pacific region (Gap 2). The third topic regards the cli-
mate change-induced redistribution of organisms. Re-
cent advances in climate change biology have improved
understanding of species and biodiversity redistribution,
but there remains a gap to be filled between the redis-
tribution, community reorganization, and renewed
ecosystem processes of individual species (Gap 3). Re-
search achievements and knowledge obtained by filling
Gaps 2 and 3 will contribute to bridging science–policy
interfaces such as the Intergovernmental Panel on Cli-
mate Change (IPCC) and Intergovernmental science-
policy Platform on Biodiversity and Ecosystem Services
(IPBES) and environmental management within local
and regional governments. The last topic treats the
importance of ecological monitoring programs in
advancing ecological theories through the example of
the monitoring program following the 2011 Tohoku
Earthquake tsunamis. This example also highlights the
gap between two of the basic individual units of society,
ecologists (scientists) and citizens (Gap 4) and the
potential of citizen science.

Second, we address the gaps between ecological and
social studies. Specifically, we discuss the ongoing
development of a new ecosystem management frame-
work in Japan, ecosystem-based disaster risk reduction
(ECO-DRR), as a tool to fill the gap between ecological
science and traditional engineering-based management
on various scales of governments (Gap 5). After illus-
trating examples of these two types of gaps, we then
indicate the benefits and next challenges toward com-
pleting the map of coupled socioecological systems.

Fig. 1 Map to link ecological and social systems and filling gaps
within/between two systems. In this map, we address different levels
of organization, especially for ecological systems. G1–G5 corre-
spond to the section ‘‘Filling the Gap 1’’ through ‘‘Filling the Gap
5’’ in the text. Arrows imply potential links that could fill the gaps
further but are not fully discussed in this article. Lead authors of
these five sections are T. Ougushi, H-J Lin, I-C Chen, J Urabe, and
T Yoshida, respectively
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Filling the gaps

Filling the gap 1: The major role of plant trait plasticity
in eco-evo feedbacks between plant and associated her-
bivore communities

Because there are multiple levels of ecological organi-
zation from genes to ecosystems, ecologists have long
recognized the importance of integrating across levels.
The interplay of evolution and ecology is critical for
understanding the evolution of biodiversity, community
structure, and ecosystem functions (Schoener 2011).
Recent studies of plant–herbivore interactions have
highlighted that genetic diversity in plants can be a
driver of plant-based communities of herbivores (Whi-
tham et al. 2006), because plant genotypes produce
phenotypic variation. However, herbivory can also
produce phenotypic variation of plants (i.e., herbivore-
induced phenotypic plasticity). Although phenotypic
and genetic variation among individual plants is critical
for the interplay of ecology and evolution, current re-
search into eco-evolutionary dynamics lacks explicit
consideration of phenotypic plasticity as a source of
phenotypic variation.

We outline a conceptual framework of eco-evolu-
tionary dynamics of plant–herbivore systems (Fig. 2;
Ohgushi 2016). There are two sources of the phenotypic
variation in plants, genetic variation and phenotypic

plasticity, both of which are greatly influenced by her-
bivory. Herbivory imposes selection on plant genotypes
and induces plastic trait changes. Because induced plant
phenotypes have a genetic basis (Gols et al. 2008), plant
trait evolution may affect the likelihood and magnitude
of phenotypic plasticity, which in turn affects the mode
of adaptive evolution (Ghalambor et al. 2015). Increased
variation in phenotypic plasticity of plants enhances
trait-mediated indirect interactions among herbivores,
and thereby links direct/indirect and trophic/non-
trophic interactions (Ohgushi 2005). This can alter spe-
cies composition and diversity of herbivores. Regarding
feedback from herbivore communities to plant trait
evolution, those communities can increase or decrease
herbivory. This is because species and functional diver-
sity of herbivores that induce plant phenotypic plasticity
increase or decrease abundances of herbivores, resulting
in variable intensities of overall herbivory. Species and
function of these inducers can influence the herbivory
intensity in different ways. These changes in abundances
of herbivore community members determine not only
the strength of selection on plant traits but also the
expression of induced phenotypes. There are two path-
ways—direct and indirect—of selection by herbivore
communities for plant traits. Direct selection can occur
when herbivore community properties select plant traits.
In contrast, indirect selection can occur when herbivore
communities induce plant phenotypes, and these in-
duced phenotypes feed back to exert selection on her-
bivore traits, which in turn lead to further selection of
plant traits.

Research on plant–herbivore interactions may offer
promising prospects to stimulate research on eco-evo-
lutionary dynamics by incorporating induced plant
phenotypes. First, herbivore-induced plant phenotypic
plasticity is very common and widespread in nature
(Karban and Baldwin 1997), and is an essential source of
plant phenotypic variation. Second, induced plant phe-
notypes can strongly influence composition and diversity
of a plant-based community of herbivores (Ohgushi
et al. 2007). Third, plants support a wide range of her-
bivores with different guilds, which induce plant phe-
notypes in different ways.

There are some critical needs to further develop eco-
evolutionary perspectives in plant–herbivore communi-
ties, as follows. (1) Since community and ecosystem
consequences of plant genetic diversity have been well
documented recently, it is essential to understand the
importance of induced phenotypes of plants relative to
genetic diversity, and their interactive effects on herbi-
vore community structure and plant trait evolution
(Hanski 2012). (2) Because selection pressure imposed
by multiple herbivores may be non-additive, we must
explore species and functional diversity and community
herbivore composition to understand selective regimes
not only for plant traits but also for herbivore host-use
traits. (3) We should appreciate the indirect selection of
the herbivore community of plant trait evolution via
evolution of host-use traits of herbivores, in response to

Fig. 2 Roles of plant trait plasticity in eco-evo feedbacks between
plant and herbivore community (Gap 1). Species composition and
diversity of herbivore community determine the type and magni-
tude of herbivory through functional trait composition, which can
directly act as selection pressure on plant constitutive phenotype
(direction selection, blue solid line). At the same time, herbivory
properties only induce the phenotypic changes of plant traits,
which first act as selection pressure on herbivore traits, which in
turn feed back as selection pressure on plant traits (indirect
selection, blue-dashed line). Figure is modified from Ohgushi
(2016)

875



plant phenotypic plasticity. (4) Because the structure of
plant-based communities of herbivores varies across
spatial scales (Ohgushi and Hambäck 2015), we must
understand how the geographic structure of those
communities shapes the interplay of ecological and
evolutionary dynamics (Thompson 2013). Research into
eco-evolutionary dynamics of plant–herbivore commu-
nities will undoubtedly enrich understanding of a broad
scope of evolution and ecology of plant–herbivore
interactions in multiple biological organizations.

Filling the gap 2: identifying key processes of blue
carbon

Climate change has resulted from increased concentra-
tions of carbon dioxide (CO2) in the atmosphere,
from � 277 ppm in 1750, the beginning of the Industrial
Era, to 393 in 2012. This will very likely cause future
catastrophes (IPCC 2014a). Atmospheric carbon is re-
moved by photosynthesis and stored in vegetation and
soil within terrestrial ecosystems, which is so-called
‘‘green carbon’’. Vegetated coastal ecosystems such as
mangroves, seagrass meadows, and salt marshes have
long been recognized as some of the most productive
natural ecosystems. They are considered blue carbon
ecosystems, and long-term rates of carbon sequestration
in these systems are much greater than green carbon
(Mcleod et al. 2011). Therefore, they are thought to
provide climate change mitigation benefits in view of
their ability to store carbon (C) in their living biomass
and in sediments (Nellemann et al. 2009; Tokoro et al.
2014; Miyajima et al. 2017). There is a need to correctly
map and document vegetated habitats for their C stor-
age to obtain a better and more reliable picture of the
role of these ecosystems in climate change mitigation
(Duarte et al. 2013).

C sinks in natural systems are primarily determined
by processes through which plants uptake and use
atmospheric CO2 (Arrigo 2004). There is a need to
understand how these vegetated habitats function as
natural C sinks and how they are affected by underlying
factors (Laffoley and Grimsditch 2009; Mcleod et al.
2011). Although accumulation rates of organic C in
living biomass and sediments of blue C ecosystems have
been estimated (Donato et al. 2011; Lavery et al. 2013;
Shih et al. 2015), little is known about C sink mecha-
nisms in natural systems (e.g., Lin et al. 2017). Very few
studies have attempted to quantify and integrate rele-
vant processes leading to C storage. To obtain a more
accurate global storage rate estimate for blue C, reliable
estimates are needed of these processes or C budgets
across a broad geographic range and of the C storage
potential of dominant plant species. Global analysis has
demonstrated the accelerating annual loss of seagrasses
from a median of 0.9% before 1940 to 7% since 1990,
but there have been data deficiencies in the Asia–Pacific
region (Waycott et al. 2009). This might undermine
certainty in the global estimate of blue carbon emission

(Pendleton et al. 2012), owing to habitat destruction of
coastal ecosystems. This region has the greatest species
richness and the largest area of mangroves and sea-
grasses in the world (Ricklefs and Latham 1993). Many
species grow together in mixed forests or meadows. A
multispecies vegetated habitat may exhibit a higher
production rate than a monospecific habitat (e.g.,
Erftemeijer and Stapel 1999). Empirical work on pro-
cesses in multispecies vegetated habitats is needed to
improve understanding of the contribution of vegetated
coastal ecosystems to blue C. However, there are
numerous gaps in the available literature for the Asia–
Pacific region. This region is densely populated and
home to � 4.3 billion people (60% of the global popu-
lation). Human activities have greatly modified envi-
ronments between terrestrial and coastal zones (Regnier
et al. 2013). Understanding the impacts of human
activities on vegetated habitats that produce blue C will
improve C cycle estimation. However, studies of factors
controlling C budgets and identification of key processes
are still lacking.

A recent study on the seagrass C budget at Dongsha
Island in the South China Sea demonstrated that leaf
production of multispecies seagrass meadows was
greater than that of monospecific beds (Huang et al.
2015). Surprisingly, sediment organic C storage was
much less than the global median value (Fourqurean
et al. 2012). The lower sediment organic C stock was
likely attributable to a higher detrital decomposition
rate, because at least 60% of the leaf and belowground
detritus was decomposed (Fig. 3). Similarly, a large
proportion of mangrove ground litter was decomposed,
but only a small proportion was buried in soil (Bouillon
et al. 2008). Detrital export was also a key process in
their C budgets, whereas the contribution of herbivory
was relatively minor (Chiu et al. 2013). Despite this,
there are still few field measurements of decomposition,
export, or herbivory. Reliable estimates are particularly
needed in the Asia–Pacific region to estimate the organic
C storage rate. Quantifying the C budgets is important
to better understand the global C cycle, support the
development of climate policies, and project future cli-
mate change scenarios (Le Quéré et al. 2013). We sug-
gest that the quantification of C budgets should consider
habitat variability and processes across all seasons to
ensure unbiased estimation. An understanding of the C
budget over time and interannual variations associated
with El Niño/La Niña (El Niño–Southern Oscillation)
are necessary to understand and quantify climate-C
feedbacks.

Filling the gap 3: adaptation to global biodiversity
redistribution

Anthropogenic climate change has been driving species
redistribution at an unprecedented scale and rate since
the Last Glacial Maximum (IPCC 2014b). This will
reorganize communities, altering ecosystem functions
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and services, resulting in climate feedbacks (Pecl et al.
2017). It is clear that responses of ecological systems
would have tremendous impacts on socioecological
systems, such as increasing risks of species extinction
(Rohr and Raffel 2010; Urban 2015), infectious disease
(Wu et al. 2016), or food insecurity (Bell et al. 2016).
Research into biodiversity redistribution has grown ra-
pidly in the past two decades and has emerged as a new
field of multidisciplinary study (Bonebrake et al. 2017).
Focusing on climate-driven species redistribution, we list
herein several knowledge gaps of biological responses
under climate change, required shifts of conservation
practices, and links between ecological and social sys-
tems in need of strengthening.

Biodiversity redistribution is evident in wide taxo-
nomic groups, with terrestrial species estimated to move
poleward by 17 km and upward by 11 meters per decade
(Chen et al. 2011), and marine species by 72 km per
decade (Poloczanska et al. 2013). The global redistri-
bution of species, however, shows great variability and
idiosyncratic responses, depending on species’ physio-
logical tolerances, dispersal constraints, and interactions
with other species. Moreover, species redistribution can
be accelerated by short-term human activities such as
harvesting (e.g., Hsieh et al. 2008; Kuo et al. 2016).
However, there are huge gaps between observation and
mechanistic understanding (Fig. 4). Studies of idiosyn-
cratic range shifts largely focused on intrinsic species
traits (Angert et al. 2011; MacLean and Beissinger 2017)
and have not yet provided conceptual or theoretical
frameworks to fully consider factors involved in the
process of range shifts (Estrada et al. 2016). Some as-
pects at species and community levels may at least be
understood in biodiversity redistribution ecology, as
discussed below.

Evolutionary dynamics of range shifts

Thermal performance is key to understanding species
response and interaction under climate change (Dell
et al. 2011). Intraspecific variation of thermal traits may
imply the capacity for range shifts. However, the pattern
and genetic basis remain to be explored. Measuring ge-
netic structure together with range dynamics provides a

Fig. 3 Integrated annual budget of seagrass carbon fluxes in lagoon of Donogsha Island (Gap 2). Percentage values represent fraction of
total primary production (1482 g C m�2 year�1). Differences in box size do not imply differences in standing C stock. Figure is
recalculated from Huang et al. (2015)

Fig. 4 Key effects of global biodiversity redistribution and links to
conservation practices (Gap 3). Climate change has resulted in
range shifts of many taxonomic groups across the globe. The effect
of species redistribution varies with ecological levels and spatial
scales. We show some of the knowledge gaps in the framework. We
need new paradigms of conservation practices, which strengthen
links between ecological and social systems at different levels, to
prepare for an overwhelmingly changed earth
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wealth of information on evolutionary adaptation
(Sexton et al. 2011).

Mechanism of community reassembly

Predicting future species composition remains a major
challenge for forecasting biodiversity redistribution.
Competitive, trophic, or mutualistic interactions may
impede or accelerate species range shifts (Urban et al.
2012; Blois et al. 2013; Alexander et al. 2015). Tradi-
tionally, studies of species distribution at large scale and
species interaction in local communities use different
techniques, theories and datasets (Staniczenko et al.
2017). The lack of predictability for biodiversity redis-
tribution highlights the need to bridge the divide and
deepen our mechanistic understanding of community
reassembly. Several lines of work have improved dy-
namic macroecological modeling. A semi-mechanistic
approach incorporates key processes of dispersal and
community assembly to predict present and future spe-
cies composition (Mokany and Ferrier 2011; Mokany
et al. 2012). Another approach combines Bayesian net-
works and distribution modeling, which explicitly cap-
tures effects of biotic interactions as conditional
dependencies among species presence (Staniczenko et al.
2017).

New paradigm of conservation practices

Conventional biodiversity conservation relies predomi-
nately on static protected area (PA) systems, targeting
specific species or ecosystems. Given that species redis-
tribution will continue in the foreseeable future, con-
servation strategies must accommodate changing
biological communities.

Permeable landscape and seascape

To improve the likelihood of successful dispersal, a PA
system should be designed for in situ conservation and
consider the surrounding environment to allow perme-
able landscapes and seascapes. PA systems can be made
more climate-resilient by including heterogeneities of
microclimate and microhabitat, or areas with slow cli-
mate change where climate refugia are more likely to
occur (Burrows et al. 2014). In fact, current PA systems
may have had important roles in facilitating range
expansion and maintaining populations (Thomas et al.
2012; Johnston et al. 2013). However, the failure of PA
systems is likely (Scriven et al. 2015). Improving overall
connectivity is crucial for long-term persistence of bio-
diversity. Partnership with private sectors, including
land owners and local communities, should be main-
streamed in conservation practices.

Managed relocation

Warming-induced biodiversity redistribution reshuffles
biological communities and accelerates the risk of
extinction (Urban 2015). Conservation strategy should
move toward ‘‘managing change’’ rather than trying to
maintain past known communities, given the reality of
rapid environmental and biological changes and the goal
of prioritizing the preservation of global biodiversity
(Thomas 2011). Relocating species to climate-suit-
able areas outside their native ranges is an option to
prevent species extinction. However, this option is often
ignored, partly because of the fear of unpre-
dictable consequences of ‘‘invasive’’ species in receiving
communities (Ricciardi and Simberloff 2009). In prac-
tice, we can ask whether the risk is truly unpre-
dictable and what type of species should be considered.
The most severe consequence of new biological interac-
tion may be species extinction. In particular, this in-
volves translocating species to a different biogeographic
region or very isolated environment, such as oceanic
islands. These are not cases for managed relocation,
usually because climate-suitable areas in the region are
considered. Moreover, translocation should give priority
to highly vulnerable species with limited chance to sus-
tain in situ. Essentially, threatened species that could
thrive elsewhere but are currently hindered by weak
mobility or inhospitable surroundings may be suit-
able targets (Thomas 2011).

Strengthen links between ecological and social systems

The pervasive effects of species on the move transcend
systems between natural systems and human societies.
However, the necessary links and communication be-
tween social and ecological systems are generally weak,
making conservation practice inefficient (Heller and
Zavaleta 2009). Understanding the pattern and process
of biodiversity redistribution not only prevents species
extinction but strengthens resource management.

Changing distributions of pollinators, pests, or pa-
thogens pose great challenges to agriculture, fisheries,
and aquaculture (Bell et al. 2016). New paradigms of
dynamic management and monitoring schemes will be
critical, such as the following: (1) dynamic ocean man-
agement (DOM). Management responses adapt to the
shifting nature of the ocean and its users. Implementa-
tion requires technological and policy capacities and
enables wise use and proactive management (Hobday
et al. 2014; Dunn et al. 2016). (2) Early warning systems
supported by citizen science. The collection of spatially
and temporally explicit data of species and environ-
mental change facilitates the aforementioned research
and modeling, which supports science-based decision-
making. Citizen science projects led by the Cornell Lab
of Ornithology (http://www.birds.cornell.edu/page.
aspx?pid=1664) and Range Extension Database and
Mapping Project (http://www.redmap.org.au/) led by
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the Institute for Marine and Antarctic Studies are good
examples of citizen involvement (see also ‘‘Filling the
gap 4: importance of ecological theory and biological
monitoring’’). These projects focus on birds and marine
taxa, respectively, detecting species on the move and
community reassembly at large spatial and temporal
scales.

The cross-cutting nature of biodiversity redistribu-
tion requires collaboration among experts in ecology
and climate, data, and the social sciences. Monitoring
schemes bridge science, private and governmental sec-
tors, further improving the understanding and manage-
ment of socioecological systems. Adapting to altered
socioecological systems requires governance that pre-
pare for overwhelmingly volatile conditions.

Filling the gap 4: importance of ecological theory
and biological monitoring in community organization

Mechanisms determining species assembly and resultant
community structure are long-standing subjects in
ecology. To understand community organization in di-
verse systems, therefore, a number of ecological theories
have been proposed. These theories are roughly cate-
gorized into deterministic and stochastic views.

The deterministic view focuses on environments as
direct determinants of community structure, because
these can directly affect physiological processes of spe-
cies or, indirectly, biological interactions such as com-
petition and predation (e.g., Weng et al. 2017). Some
community ecology theories, e.g., ‘‘Paradox of plank-
ton’’ (Hutchinson 1961), theories of keystone species
(Paine 1969), and trophic cascade (Carpenter and
Kitchell 1996), rely on such deterministic forces. Even
the alternative stable state theory (Scheffer et al. 1993)
relies on a deterministic view, because the stability
landscape of equilibria changes with environmental
conditions. Ultimately, this view implies that abiotic
environmental factors and biological interactions act as
filters that shift or select organisms as members of a
local community. In other words, these filters charac-
terize niche space in a local community, and so the
deterministic view implicitly assumes that the commu-
nity is structured by niche limitation.

The stochastic view focuses on dispersal abilities or
probabilities of immigration success of species more
than on environments and biological interactions, and
address the unequal ability and probability of organisms
to access a local habitat (MacArthur and Wilson 1967).
Diversity of life histories, e.g., small-size vs. large-size
propagules and planktonic propagules drifting over long
periods vs. early settlers, indicates that dispersal abilities
and therefore probabilities of immigration success to
new habitats vary between organisms (Lockwood et al.
2005). It is also likely that the immigration success of an
organism depends on the meta-population structure, i.e.,
distance and size of a source population. If these factors
are dominant, the local community would be shaped by

the dispersal probabilities of organisms. The theory of
island biogeography (MacArthur and Wilson 1967),
lottery competition (Chesson and Warner 1981), and
neutral theory (Hubbell 2001) are in line with the
stochastic view. Implicitly, that view implies that the
community is structured by dispersal limitation.

In community assembly, however, deterministic and
stochastic views are probably not exclusive to each
other. Rather, both niche and dispersal limitations
operate subsequently to shape community structure. To
be a member of a local community, each species must
pass through a number of filters, some of which are
deterministic but others stochastic (Fig. 5). However,
our understanding of the relative importance of deter-
ministic (or niche limitation) and stochastic (or dispersal
limitation) forces is still limited, probably because of few
opportunities to experimentally examine meta-commu-
nities at large ecosystem scale.

One such opportunity is a powerful natural distur-
bance that has ecological impacts at regional or multi-
ecosystem scales. For example, the Great East Japan
Earthquake in 2011 and resulting large tsunamis struck
the Pacific coast of eastern Japan and affected coastal
ecosystems at regional scale (Shimada 2016). In some
tidal communities, a number of benthic animal species
dramatically decreased immediately after the tsunamis
(Urabe et al. 2013). In tidal flats where environmental
conditions did not change substantially, after an initial
increase of species richness over 2 years, species richness
and composition returned to levels prior to the tsunamis
in the fourth year. These findings imply that niche lim-
itation was important in structuring communities in the
later stage (by 2014) through environmental filtering
and/or biological interactions. In fact, in 4 years, species
compositions roughly returned to those previously
found in certain tidal flats before the tsunami (Nishita
et al. 2016). In contrast, in tidal flats where environ-
mental conditions changed greatly because of the tsu-
namis, communities also changed and did not show a
recovery to the original state for at least 4 years after the
tsunamis (Kanaya et al. 2012, 2015). These results sug-

Fig. 5 Diagram of the community organization (Gap 4). Species in
a local community are selected through various deterministic filters
within local environments and stochastic filters between local
communities and meta-communities. Species in meta-communities
are determined by species in regional pool that pass through
geographic filters
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gest that the tidal communities are assembled and
shaped mainly by niche limitation. However, in any tidal
flat, community structures examined in these studies
never reached the original ones before the tsunamis.
Thus, it is premature to conclude that niche limitation
plays a more pivotal role than dispersal limitation
(Nishita et al. 2016). Clearly, we need more long-term
observation of the communities.

Climate models have forecast that owing to putative
climate change, there will be more frequent large or
extreme natural disturbances such as typhoons, floods,
and drought (e.g., Easterling et al. 2000). Ironically, such
natural disturbances may provide an opportunity to
study how communities are assembled and shaped. To
take full advantage of this opportunity, we must develop
ecological theories considering both deterministic and
stochastic views that can be feasibly used to analyze
empirical data (e.g., Chang et al. 2017). More impor-
tantly, we need community data before the disturbance.
Otherwise, we can do nothing, even if we have sophis-
ticated ecological theories at our disposal.

One of the promising approaches to long-term obser-
vation programs would be related to citizen science (Urabe
et al. 2013;Kobori et al. 2016;Nishita et al. 2016).After the
tsunamis, we implemented a monitoring program for
benthic communities at Sendai Bay every year, with over
500 citizen volunteers over 5 years (Ito 2017). The program
provided benefits to citizens (e.g., playing with mud and
animals (refreshment), learning the ecologyandecosystems
of animals, the environment, and biodiversity literacy, and
conservation consensus) and ecologists (e.g., outreach of
ecological importance, sharing with society, feedback to
our science, reconsideration of conservation needs, and
donations from private sectors) (Ito 2017). It therefore
functioned to bridge a gap between citizens and ecologists
and solved a human-power shortage in obtaining high-
quality large datasets (Fig. 1). These data will certainly be
treasures for future ecologists to understand community
organization under climate change, and provide a basis for
science-based ecosystem management.

Filling the gap 5: adaptation to natural disasters:
how does the interaction of disturbance and land use
influence biodiversity and disaster risks?

In addition to global-scale impacts, future climate change
is also predicted for Japan, including warming and in-
creased heavy rain (MOE Japan 2014). The impacts of
climate change extend to various natural and human
systems worldwide (IPCC 2014b). Among these, natural
disasters have been increasing, partly because of con-
temporary climate change (IPCC 2014b; Munich Re
2015). Adaptation to disaster risk is important for the
sustainability of both local and global human societies.
Coincident with climate change, many local communities
in Japan are experiencing shrinking populations, leading
to the abandonment of farmlands, houses, and other
intensive land use (National Institute of Population and

Social SecurityResearch (IPSS) 2014;MLIT Japan 2015).
Also, existing infrastructures, including those for disaster
prevention, have been aging, and the predicted expendi-
ture for renewal of those infrastructures in the next several
decades continues to increase (MLIT 2012).

Recently, increasing attention has been paid to
ecosystem-based adaptation to risks of climate change,
with a focus on lower economic cost and multiple
functions of ecosystem services (e.g., CBD 2015; UN
Office for Disaster Risk Reduction 2015; MOE Japan
2016). However, in local communities, this adaptation
can sometimes be rediscovered in the traditional wisdom
of local people (e.g., Fukamachi et al. 2009; MOE Japan
2016). Ecosystem-based disaster risk reduction (Eco-
DRR) takes advantage of both multiple ecosystem ser-
vices and disaster risk reduction by, for example,
reducing the exposure of human systems through land-
use management (SCJ 2014; The Royal Society 2014)
(Fig. 6). Population decline provides ample opportunity
for implementing Eco-DRR in Japan. However, quan-
titative analysis of the multi-functionality of Eco-DRR
is still in its infancy (SCJ 2014; The Royal Society 2014),
so detailed technical comparison with conventional
hard-engineering countermeasures is not yet feasible.
This hampers the social implementation of Eco-DRR.

To understand how the ecosystem-based approach
can simultaneously reduce disaster risks and
restore/conserve biodiversity, we have been studying
how the interaction of natural disturbances and land use
influences disaster risks and biodiversity in the Lake
Mikata watershed of Fukui Prefecture. This area has
flooding every 5 years on average, and some new
countermeasures are being planned. Our preliminary
results suggest that Eco-DRR can produce win–win sit-
uation for biodiversity conservation and disaster risk
reduction. Our species distribution modeling with both
land use and flood risk (i.e., flood disturbance of
organisms) as explanatory variables showed that some
organisms should benefit from the land-use pattern, such
that their habitat is selectively conserved in the flood-

Fig. 6 Risk of natural disasters and Eco-DRR (Gap 5). Risk of
natural disasters consists of hazards, exposure, and vulnerability.
Ecosystem-based disaster risk reduction (Eco-DRR) takes advan-
tage of both multiple ecosystem services and disaster risk reduction
by managing land use of towns and cities, as exemplified here
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prone area, thereby avoiding the flood risk to human
society. We are currently examining what the Eco-DRR
potentially provides in terms of multiple ecosystem ser-
vices, including provisioning, regulating, and cultural
services. By integrating their results, we wish to propose
how the Eco-DRR can be compared to the conventional
hard-engineering countermeasures in terms of reducing
the risk of natural disasters and multi-functionality of
ecosystem services.

What are the benefits of filling the gaps?

Here, we summarize how filling the gaps in socioeco-
logical systems is beneficial for ecological science and
society (e.g., citizens and governments). The examples
above illustrate two different types of gaps in our
understanding of socioecological systems (Fig. 1).
Ecology has developed through repeated cycles of
diversification into sub-fields and their reintegration. In
the last two decades, the integration of subdivided fields
in ecology has facilitated great progress in ecology.
Actually, such approaches link different levels of eco-
logical organizations, from community to ecosystem
(e.g., Loreau et al. 2001; Ehrenfeld et al. 2005; Gap 2)
and evolution to community (e.g., Matthews et al. 2014;
Gap 1). Eco-evolutionary approaches will also increase
understanding of complex social behaviors (Harrington
and Sanchez 2014). An urgent need is to scale up cli-
mate-change biology at organism and species levels to
community and ecosystem levels (Gap 3).

Filling the gaps between ecological organization and
processes is crucial for ecologists to provide citizens with
an overall picture of ecological sciences. Ecologists
cannot convince citizens and other scientists that ecol-
ogy is often more valuable than the natural history of
animals, plants, and microbes without sharing the full
picture of the ecological sciences. Highlighting links and
feedbacks between multiple ecological processes enables
citizens to better understand that ecological conserva-
tion of ecological processes (e.g., the potential of evo-
lution and pollination service) and ecosystem processes
(e.g., primary production and nutrient cycling) within a
community in a certain local or regional area, and global
biodiversity conservation, are much more important
than separately protecting individuals of endangered
species. In other words, filling the gaps between different
ecological organizations not only advances ecological
science but also improves communication between
ecologists and citizens. Similarly, citizen science is not a
unidirectional information flow from ecologists to citi-
zens; data obtained by citizens will furnish precious
materials for cutting-edge research to advance ecological
theories (Gap 4). Covering multiple spatial scales in each
ecological organization is also a promising approach to
advance ecology (Gap 2 and Gap 4) and enhance the
connection between ecological and social systems (Gap
5). Filling the gaps between multiple spatial scales will

make it easier and more effective for local and regional
governments (from city and county to nation) to design
effective ecosystem management strategies dependent on
spatial scale.

Next challenges

We now have an updated map that better highlights
interrelationships among components within the
socioecological system (Fig. 1), but this map remains
incomplete. The following are a few examples of further
steps to improve our map. Gaps between the proposed
gaps should be also filled. For example, eco-evo feed-
back concepts and phenotypic plasticity in species traits
(Gap 1) should be incorporated into the framework of
the global redistribution of biodiversity (Gap 3). In
addition to proposing brand new ideas and accumulat-
ing more empirical data, what we need to advance
ecology includes sharing of existing theories and con-
cepts from different scientific fields. This often boosts
our understanding [e.g., unified theory of biodiversity
(Hubbell 2001), originally from the neutral theory of
molecular evolution (Kimura 1968); evolutionary game
theory (Smith 1974) that was developed from game
theory in mathematics and economics (Nash 1950)]. We
need positive attitudes to fill the gaps between scientists
in diverse fields of academics (e.g., Liu et al. 2017).
Sharing data is a growing trend in ecological sciences
and other fields. The data paper section has been pub-
lished in Ecology, BMC Ecology, PLOS ONE, and
Ecological Research (e.g., Iwayama et al. 2017). There
are many open ecological databases [FishBase
http://www.fishbase.org/search.php; GPDD (Inchausti
and Halley 2001); TRY (Kattge et al. 2011)] and geno-
mic information [e.g., KEGG (Kanehisa and Goto
2000), MBGD (Uchiyama et al. 2010), and SILBA
(Quast et al. 2013)]. The International Long-Term
Ecological Research East Asia–Pacific Regional net-
work has accumulated valuable datasets (Kim et al.
unpublished). The next step may include developing a
framework to share research ideas and hypotheses be-
fore completion of research projects (e.g., Royal Society
Open Science). Such new frameworks for sharing ideas
will accelerate the filling of gaps between ecologists.
Eventually, via gap-filling, the application of new eco-
logical sciences arising from these continuous challenges
to local and regional societies in East Asia will improve
environmental management at various government
scales under human-driven environmental changes (e.g.,
Laplace et al. 2017; Lin et al. 2017).
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